Convolutional neural network inversion of airborne transient electromagnetic data

被引:33
|
作者
Wu, Sihong [1 ,2 ]
Huang, Qinghua [1 ,2 ]
Zhao, Li [1 ,2 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Dept Geophys, Beijing 100871, Peoples R China
[2] Peking Univ, Hebei Hongshan Geophys Natl Observat & Res Stn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetics; Inverse problem; Imaging; Numerical study; Resistivity; CONSTRAINED INVERSION; BAYESIAN INVERSION; 3D INVERSION;
D O I
10.1111/1365-2478.13136
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As an efficient geophysical exploration technique, airborne transient electromagnetics shows strong adaptability to complex terrains and can provide subsurface resistivity information rapidly with a dense spatial coverage. However, the huge volume of airborne transient electromagnetic data obtained from a large number of spatial locations presents a great challenge to real-time airborne transient electromagnetic interpretation due to the high computational cost. Moreover, the inherent non-uniqueness of the inverse problem also limits our ability to constrain the underground resistivity structure. In this study, we develop an entirely data-driven convolutional neural network to solve the airborne transient electromagnetic inverse problem. Synthetic tests show that the convolutional neural network is computationally efficient and yields robust results. Compared with the Gauss-Newton method, convolutional neural network inversion does not depend on the choices of an initial model and the regularization parameters and is less prone to getting trapped in a local minimum. We also demonstrate the general applicability of the convolutional neural network to three-dimensional synthetic airborne transient electromagnetic responses and the field observations acquired from Leach Lake Basin, Fort Irwin, California. The efficient convolutional neural network inversion framework can support real-time resistivity imaging of subsurface structures from airborne transient electromagnetic observations, providing a powerful tool for field explorations.
引用
下载
收藏
页码:1761 / 1772
页数:12
相关论文
共 50 条
  • [21] Deep learning electromagnetic inversion with convolutional neural networks
    Puzyrev, Vladimir
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (02) : 817 - 832
  • [22] (Quasi-)Real-Time Inversion of Airborne Time-Domain Electromagnetic Data via Artificial Neural Network
    Bai, Peng
    Vignoli, Giulio
    Viezzoli, Andrea
    Nevalainen, Jouni
    Vacca, Giuseppina
    REMOTE SENSING, 2020, 12 (20) : 1 - 11
  • [23] Magnetotelluric inversion based on convolutional neural network
    Liao X.
    Zhang Z.
    Yao Y.
    Lu R.
    Fan X.
    Cao Y.
    Feng T.
    Shi Z.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2020, 51 (09): : 2546 - 2557
  • [24] Convolutional neural network for seismic impedance inversion
    Das, Vishal
    Pollack, Ahinoam
    Wollner, Uri
    Mukerji, Tapan
    GEOPHYSICS, 2019, 84 (06) : R869 - R880
  • [25] 3D inversion of airborne electromagnetic data
    Cox, Leif H.
    Wilson, Glenn A.
    Zhdanov, Michael S.
    GEOPHYSICS, 2012, 77 (04) : WB59 - WB69
  • [26] Probabilistic inversion of airborne electromagnetic data for basement conductors
    Hauser, Juerg
    Gunning, James
    Annetts, David
    GEOPHYSICS, 2016, 81 (05) : E389 - E400
  • [27] INVERSION OF TIME-DOMAIN AIRBORNE ELECTROMAGNETIC DATA
    HUANG, HP
    WANG, WZ
    ACTA GEOPHYSICA SINICA, 1990, 33 (01): : 87 - 97
  • [28] 2.5D inversion of airborne electromagnetic data
    Wilson, G. A.
    Raiche, A. P.
    Sugeng, F.
    EXPLORATION GEOPHYSICS, 2006, 37 (04) : 363 - 371
  • [29] Surface geometry inversion of transient electromagnetic data
    Lu, Xushan
    Farquharson, Colin G.
    Lelievre, Peter
    GEOPHYSICS, 2024, 89 (04) : E177 - E192
  • [30] A Hybrid Electromagnetic Inversion Method Based on BI-GMM-GAMP and Convolutional Neural Network
    Zhou, Lijing
    Liu, Zhixun
    Wang, Fangfang
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,