A Modeling Approach for Energy Saving Based on GA-BP Neural Network

被引:16
|
作者
Li, Junke [1 ]
Guo, Bing [1 ]
Shen, Yan [2 ]
Li, Deguang [1 ]
Huang, Yanhui [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Control Engn, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy saving; Model; Software runtime characteristics; GA-BP neural network; DVFS; DYNAMIC VOLTAGE; MEMORY; DVFS;
D O I
10.5370/JEET.2016.11.5.1289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To cope with the increasing scale of scientific data and computational complexity of daily data, more and more cores have been integrated into GPU(Graphic Processing Units) and its working frequency is continually upgrading, which makes it being widely used in general computing for assisting CPU to accelerate program. While GPU offers powerful computing capability, the problem of the energy consumption becomes particularly prominently and it has become one of the important issues hindering development of GPU. For the purpose of solving this problem, DVFS (Dynamic Voltage Frequency Scaling) becomes an effective solution. Because the previous works only focus on single component and use linear relationship to do DVFS without considering energy saving of other units in system at software runtime, therefore we propose an energy saving model (CDVFS) of considering the characteristics of both GPU and memory at software runtime based on GA-BP (Genetic Algorithm-Back propagation) neural network to make better use of the relationship between components for energy saving. Firstly, the model assumes that functional relation between the software runtime characteristics of GPU and memory and the appropriate frequency which corresponds to the GPU and memory as nonlinear. Secondly, we extract five characteristics and use GA-BP neural network to fit the nonlinear functional relation. At last, experiments demonstrate the effectiveness of the approach and reasonableness of assumption, and also show that CDVFS can get average energy savings of 17.06% compared with previous works within acceptable performance loss.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 50 条
  • [21] Application of the GA-BP Neural Network in Earthwork Calculation
    Fang, Peng
    Cai, Zhixiong
    Zhang, Ping
    5TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE2017), 2018, 301
  • [22] Optimization of impulse water turbine based on GA-BP neural network arithmetic
    Tang, Lingdi
    Yuan, Shouqi
    Tang, Yue
    Qiu, Zhipeng
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (01) : 241 - 253
  • [23] Identification of the shear parameters for lunar regolith based on a GA-BP neural network
    Zou, Meng
    Xue, Long
    Gai, Hongjian
    Dang, Zhaolong
    Wang, Song
    Xu, Peng
    JOURNAL OF TERRAMECHANICS, 2020, 89 : 21 - 29
  • [24] Fault Diagnosis Research for Servo Valve Based on GA-BP Neural Network
    Zheng, Feilong
    Zeng, Liangcai
    Lu, Yundan
    Kai, Gangsheng
    Fu, Shuguang
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (09) : 2846 - 2850
  • [25] Optimization of impulse water turbine based on GA-BP neural network arithmetic
    Lingdi Tang
    Shouqi Yuan
    Yue Tang
    Zhipeng Qiu
    Journal of Mechanical Science and Technology, 2019, 33 : 241 - 253
  • [26] Stability Analysis of Geotechnical Landslide Based on GA-BP Neural Network Model
    Xu, Jin
    Zhao, Yanna
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [27] Prediction of Rice Processing Loss Rate Based on GA-BP Neural Network
    Yang, Hua
    Li, Jian
    Liu, Neng
    Yi, Kecheng
    Wang, Jing
    Fu, Rou
    Zhang, Jun
    Xiang, Yunzhu
    Yang, Pengcheng
    Hang, Tianyu
    Zhang, Tiancheng
    Wang, Siyi
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 121 - 132
  • [28] Strength Prediction of Foam Light Soil Based on GA-BP Neural Network
    Zhou Z.
    Deng Z.
    Chen Y.
    Hu J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (11): : 125 - 132
  • [29] Inversion analysis of chlorophyll a concentration in Wuliangsuhai based on GA-BP neural network
    Ren Dawei
    Fu Xueliang
    Li Honghui
    Hu Hua
    Gao Ge
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [30] Concentrate grade prediction of gold ore based on GA-BP neural network
    Liu, Qing
    Yuan, Wei
    Wang, Bao
    Peng, Liang-Zhen
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2015, 36 (02): : 237 - 240