A Modeling Approach for Energy Saving Based on GA-BP Neural Network

被引:16
|
作者
Li, Junke [1 ]
Guo, Bing [1 ]
Shen, Yan [2 ]
Li, Deguang [1 ]
Huang, Yanhui [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Control Engn, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy saving; Model; Software runtime characteristics; GA-BP neural network; DVFS; DYNAMIC VOLTAGE; MEMORY; DVFS;
D O I
10.5370/JEET.2016.11.5.1289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To cope with the increasing scale of scientific data and computational complexity of daily data, more and more cores have been integrated into GPU(Graphic Processing Units) and its working frequency is continually upgrading, which makes it being widely used in general computing for assisting CPU to accelerate program. While GPU offers powerful computing capability, the problem of the energy consumption becomes particularly prominently and it has become one of the important issues hindering development of GPU. For the purpose of solving this problem, DVFS (Dynamic Voltage Frequency Scaling) becomes an effective solution. Because the previous works only focus on single component and use linear relationship to do DVFS without considering energy saving of other units in system at software runtime, therefore we propose an energy saving model (CDVFS) of considering the characteristics of both GPU and memory at software runtime based on GA-BP (Genetic Algorithm-Back propagation) neural network to make better use of the relationship between components for energy saving. Firstly, the model assumes that functional relation between the software runtime characteristics of GPU and memory and the appropriate frequency which corresponds to the GPU and memory as nonlinear. Secondly, we extract five characteristics and use GA-BP neural network to fit the nonlinear functional relation. At last, experiments demonstrate the effectiveness of the approach and reasonableness of assumption, and also show that CDVFS can get average energy savings of 17.06% compared with previous works within acceptable performance loss.
引用
下载
收藏
页码:1289 / 1298
页数:10
相关论文
共 50 条
  • [1] Option Pricing Based on GA-BP neural network
    Qian, Long
    Zhao, Jianbin
    Ma, Yue
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 1340 - 1354
  • [2] GA-BP neural network modeling for project portfolio risk prediction
    Bai, Libiao
    Wei, Lan
    Zhang, Yipei
    Zheng, Kanyin
    Zhou, Xinyu
    JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT, 2024, 37 (03) : 828 - 850
  • [3] UAV Fault Detection based on GA-BP neural network
    Chen, Yuepeng
    Zhang, Cong
    Zhang, Qingyong
    Hu, Xia
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 806 - 811
  • [4] Prediction of Ore Quantity Based on GA-BP Neural Network
    Guo, Li
    Wu, Qiong
    Gu, Qinghua
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT IN THE MINERALS INDUSTRY (SDIMI 2017), 2017, 2 : 78 - 82
  • [5] GA-BP Neural Network Based Tire Noise Prediction
    Che Yong
    Xiao Wangxin
    Chen Lijun
    Huang Zhichu
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 65 - +
  • [6] Prediction of tool wear based on GA-BP neural network
    Wei, Weihua
    Cong, Rui
    Li, Yuantong
    Abraham, Ayodele Daniel
    Yang, Changyong
    Chen, Zengtao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2022, 236 (12) : 1564 - 1573
  • [7] Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network
    Zhang, Jiajing
    Yin, Guodong
    Ni, Youcong
    Chen, Jinlan
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [8] A new teachers career planning prediction method based on GA-BP energy neural network
    Shufa, Chen
    Jiaxin, Yao
    Energy Education Science and Technology Part A: Energy Science and Research, 2013, 31 (04): : 2717 - 2720
  • [9] Modeling for project portfolio benefit prediction via a GA-BP neural network
    Tian, Yuanyuan
    Bai, Libiao
    Wei, Lan
    Zheng, Kanyin
    Zhou, Xinyu
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 183
  • [10] Research of Energy Consumption Prediction of Paper Enterprises Based on GA-BP Neural Network Algorithm
    Hu, Yanan
    Huo, Jiaofei
    Wang, Pengwen
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND MECHANICAL ENGINEERING (EMIM 2017), 2017, 76 : 634 - 638