Stabilized Finite Element Methods for the Oberbeck-Boussinesq Model

被引:18
|
作者
Dallmann, Helene [1 ]
Arndt, Daniel [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
关键词
Oberbeck-Boussinesq model; Navier-Stokes equations; Stabilized finite elements; Local projection stabilization; Grad-div stabilization; Non-isothermal flow; GENERALIZED OSEEN PROBLEM; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE FLOWS; CONVECTION;
D O I
10.1007/s10915-016-0191-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider conforming finite element approximations for the time-dependent Oberbeck-Boussinesq model with inf-sup stable pairs for velocity and pressure and use a stabilization of the incompressibility constraint. In case of dominant convection, a local projection stabilization method in streamline direction is considered both for velocity and temperature. For the arising nonlinear semi-discrete problem, a stability and convergence analysis is given that does not rely on a mesh width restriction. Numerical experiments validate a suitable parameter choice within the bounds of the theoretical results.
引用
收藏
页码:244 / 273
页数:30
相关论文
共 50 条