Stabilized Finite Element Methods for the Oberbeck-Boussinesq Model

被引:18
|
作者
Dallmann, Helene [1 ]
Arndt, Daniel [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
关键词
Oberbeck-Boussinesq model; Navier-Stokes equations; Stabilized finite elements; Local projection stabilization; Grad-div stabilization; Non-isothermal flow; GENERALIZED OSEEN PROBLEM; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE FLOWS; CONVECTION;
D O I
10.1007/s10915-016-0191-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider conforming finite element approximations for the time-dependent Oberbeck-Boussinesq model with inf-sup stable pairs for velocity and pressure and use a stabilization of the incompressibility constraint. In case of dominant convection, a local projection stabilization method in streamline direction is considered both for velocity and temperature. For the arising nonlinear semi-discrete problem, a stability and convergence analysis is given that does not rely on a mesh width restriction. Numerical experiments validate a suitable parameter choice within the bounds of the theoretical results.
引用
收藏
页码:244 / 273
页数:30
相关论文
共 50 条
  • [1] Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model
    Helene Dallmann
    Daniel Arndt
    Journal of Scientific Computing, 2016, 69 : 244 - 273
  • [2] On the Oberbeck-Boussinesq approximation
    Rajagopal, KR
    Ruzicka, M
    Srinivasa, AR
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08): : 1157 - 1167
  • [3] Strange Attractors for Oberbeck-Boussinesq Model
    Vakulenko, Sergei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (01) : 303 - 343
  • [4] A Lorenz model for an anelastic Oberbeck-Boussinesq system
    Grandi, Diego
    Passerini, Arianna
    Trullo, Manuela
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 169
  • [5] The Oberbeck-Boussinesq approximation as a constitutive limit
    Kagei, Yoshiyuki
    Ruzicka, Michael
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2016, 28 (05) : 1411 - 1419
  • [6] On the Oberbeck-Boussinesq approximation for gases
    Grandi, Diego
    Passerini, Arianna
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 134
  • [7] On the Use and Misuse of the Oberbeck-Boussinesq Approximation
    Barletta, Antonio
    Celli, Michele
    Rees, D. Andrew S.
    PHYSICS, 2023, 5 (01): : 298 - 309
  • [8] The Oberbeck-Boussinesq approximation in critical spaces
    Danchin, Raphael
    He, Lingbing
    ASYMPTOTIC ANALYSIS, 2013, 84 (1-2) : 61 - 102
  • [9] BOUNDARY VALUE AND EXTREMUM PROBLEMS FOR GENERALIZED OBERBECK-BOUSSINESQ MODEL
    Brizitskii, R. V.
    Saritskaya, Zh. Yu.
    Kravchuk, R. R.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1215 - 1232
  • [10] Unidirectional flows of binary mixtures within the framework of the Oberbeck-Boussinesq model
    Andreev, V. K.
    Stepanova, I. V.
    FLUID DYNAMICS, 2016, 51 (02) : 136 - 147