same order type groups;
non-solvable;
main supergraph;
Thompson's problem;
CHARACTERIZABILITY;
Q);
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). In this paper, we will show that if S(G) congruent to S(S), where S belongs to a large class of finite non-solvable groups, then G congruent to S. This work is an important step in solving Thompson's problem.
机构:
Anhui Jianzhu Univ, Dept Math & Phys, Hefei, Anhui, Peoples R ChinaAnhui Jianzhu Univ, Dept Math & Phys, Hefei, Anhui, Peoples R China
Wei, X.
Zhurtov, A. Kh.
论文数: 0引用数: 0
h-index: 0
机构:
Kabardino Balkarian State Univ, Nalchik, RussiaAnhui Jianzhu Univ, Dept Math & Phys, Hefei, Anhui, Peoples R China
Zhurtov, A. Kh.
Lytkina, D. V.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Siberian State Univ Telecommun & Informat Sci, Novosibirsk, RussiaAnhui Jianzhu Univ, Dept Math & Phys, Hefei, Anhui, Peoples R China
Lytkina, D. V.
Mazurov, V. D.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, RussiaAnhui Jianzhu Univ, Dept Math & Phys, Hefei, Anhui, Peoples R China