Tree crown segmentation and species classification in a wet eucalypt forest from airborne hyperspectral and LiDAR data

被引:9
|
作者
Yadav, Bechu K., V [1 ]
Lucieer, Arko [1 ]
Baker, Susan C. [2 ,3 ]
Jordan, Gregory J. [2 ]
机构
[1] Univ Tasmania, Sch Geog Planning & Spatial Sci, Private Bag 76, Hobart, Tas 7001, Australia
[2] Univ Tasmania, Sch Nat Sci, Biol Sci, Hobart, Tas, Australia
[3] Univ Tasmania, ARC Ctr Forest Value, Hobart, Tas, Australia
基金
澳大利亚研究理事会;
关键词
OBJECT-BASED APPROACH; MULTISPECTRAL IMAGERY; WETLAND VEGETATION; FUSION; DELINEATION; ALGORITHMS; REGRESSION; LANDSCAPES; FRAMEWORK; SELECTION;
D O I
10.1080/01431161.2021.1956699
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
To sustainably manage forest biodiversity and monitor changes in species patterning, mapping the spatial distribution of tree species is indispensable. Remote sensing can provide powerful tools for mapping species, but this task is complex in areas with high plant diversity and multi-layered canopies. This paper addresses the issue of classifying wet eucalypt forest plants by examining tree crown segmentation and species classification using different combinations of remote sensing datasets against mapped tree locations. This study explores optimal segmentation parameters for tree crown delineation compared to manually digitized tree crowns. The best segmentation accuracy of 88.71%, resulted from segmenting a combined Minimum Noise Fraction (MNF) dataset derived from hyperspectral imagery (HSI) and a LiDAR-derived Canopy Height Model (CHM). Object-based classification of tree species was performed using a random forest classifier. The fused dataset of MNF and CHM produced the highest overall accuracy of 78.26% for four vegetation classes, while the fused HSI, indices, and CHM performed best (66.67%) with five vegetation classes. However, both approaches had a high overall performance. The CHM contributed to tree crown segmentation and species classification accuracy, and fused datasets were more robust to spatially discriminate wet eucalypt forest species compared to a single dataset. Eucalyptus obliqua was classified with the highest accuracy of 90.86% for four classes using the fused MNF and CHM dataset, and 86.11% for five classes using the fused HSI, indices, and CHM dataset. An important understorey species - the tree fern (Dicksonia antarctica) - was classified with the highest accuracy of 83.54% for four classes using HSI. Therefore, fusing hyperspectral and LiDAR data could classify both the overstorey and dominant understorey species, and thus play a crucial role in identifying forest biological diversity. This approach will be useful for forest managers and ecologists to plan sustainable management of eucalypt forest biodiversity and produce maps for monitoring species of interest.
引用
收藏
页码:7952 / 7977
页数:26
相关论文
共 50 条
  • [41] Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery
    Yuanyong Dian
    Zengyuan Li
    Yong Pang
    Journal of the Indian Society of Remote Sensing, 2015, 43 : 101 - 107
  • [42] A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers
    Michalowska, Maja
    Rapinski, Jacek
    REMOTE SENSING, 2021, 13 (03) : 1 - 27
  • [43] Classification of Protection Forest Tree Species Based on UAV Hyperspectral Data
    Zhao Q.
    Jiang P.
    Wang X.
    Zhang L.
    Zhang J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (11): : 190 - 199
  • [44] Individual Tree Crown Modeling and Change Detection From Airborne Lidar Data
    Xiao, Wen
    Xu, Sudan
    Elberink, Sander Oude
    Vosselman, George
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) : 3467 - 3477
  • [45] Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
    Dalponte, Michele
    Orka, Hans Ole
    Ene, Liviu Theodor
    Gobakken, Terje
    Naesset, Erik
    REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 306 - 317
  • [46] FOREST BIODIVERSITY MAPPING USING AIRBORNE LIDAR AND HYPERSPECTRAL DATA
    Zeng Yuan
    Zhao Yujin
    Zhao Dan
    Wu Bingfang
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3561 - 3562
  • [47] Forest structure modeling with combined airborne hyperspectral and LiDAR data
    Latifi, Hooman
    Fassnacht, Fabian
    Koch, Barbara
    REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 10 - 25
  • [48] Forest stand delineation using airborne LiDAR and hyperspectral data
    Xiong, Hao
    Pang, Yong
    Jia, Wen
    Bai, Yu
    SILVA FENNICA, 2024, 58 (02)
  • [49] Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
    Liu, Luxia
    Coops, Nicholas C.
    Aven, Neal W.
    Pang, Yong
    REMOTE SENSING OF ENVIRONMENT, 2017, 200 : 170 - 182
  • [50] A HYBRID APPROACH FOR TREE CLASSIFICATION IN AIRBORNE LIDAR DATA
    Li, Xiaoling
    Zeng, Wenjun
    Duan, Ye
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2183 - 2187