Carrier Dynamics Engineering for High-Performance Electron-Transport-Layer-free Perovskite Photovoltaics

被引:59
|
作者
Han, Qiwei [1 ,2 ,3 ]
Ding, Jie [1 ,4 ]
Bai, Yusong [3 ]
Li, Tianyang [2 ,3 ]
Ma, Jing-Yuan [1 ,4 ]
Chen, Yao-Xuan [1 ,4 ]
Zhou, Yihao [2 ]
Liu, Jie [1 ,3 ,4 ]
Ge, Qian-Qing [1 ,4 ]
Chen, Jie [4 ]
Glass, Jeffrey T. [2 ,5 ]
Therien, Michael J. [3 ]
Liu, Jie [1 ,3 ,4 ]
Mitzi, David B. [2 ,3 ]
Hu, Jin-Song [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Chem, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[3] Duke Univ, Dept Chem, Durham, NC 27708 USA
[4] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[5] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
来源
CHEM | 2018年 / 4卷 / 10期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
SOLAR-CELLS; COMPACT LAYER; HALIDE PEROVSKITES; EFFICIENT; STABILITY; HYSTERESIS; CH3NH3PBI3; INTERFACE; LENGTHS; FILMS;
D O I
10.1016/j.chempr.2018.08.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron-transport-layer-free (ETL-free) device architectures are promising designs for perovskite photovoltaics because they offer simpler configurations, low cost, and convenience for versatile optoelectronics. However, the development of ETL-free photovoltaics is hindered by their low performance. Herein, we reveal that a low electron-injection rate at the ETL-free interface is responsible for the performance loss. Moreover, we demonstrate that improving carrier lifetimes in the perovskite films can remedy the poor carrier extraction at interfaces, enabling carrier collection efficiency in ETL-free photovoltaics to approach that in ETL-containing devices. Using perovskite films with microsecond carrier lifetimes, we obtained ETL-free devices with a power conversion efficiency (PCE) of 19.5%, nearly eliminated hysteresis, and good stability. Such a PCE value is comparable to that (20.7%) of the analogous ETL-containing photovoltaics. These results offer opportunities for ETL-free architecture designs in the perovskite photovoltaics family. More importantly, this research provides a general approach to improving the performance of photovoltaics with low-injection-rate interfaces.
引用
收藏
页码:2405 / 2417
页数:13
相关论文
共 50 条
  • [31] Physical Fields Manipulation for High-Performance Perovskite Photovoltaics
    Zhang, Cong-Cong
    Yuan, Shuai
    Lou, Yan-Hui
    Okada, Hiroyuki
    Wang, Zhao-Kui
    [J]. SMALL, 2022, 18 (16)
  • [32] Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration
    Ye, Tao
    Hou, Yuchen
    Nozariasbmarz, Amin
    Yang, Dong
    Yoon, Jungjin
    Zheng, Luyao
    Wang, Ke
    Wang, Kai
    Ramakrishna, Seeram
    Priya, Shashank
    [J]. ACS ENERGY LETTERS, 2021, 6 (09) : 3044 - 3052
  • [33] Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management
    Li, Huilin
    Chen, Chong
    Hu, Hangyu
    Li, Yu
    Shen, Zhitao
    Li, Fumin
    Liu, Ying
    Liu, Rong
    Chen, Junwei
    Dong, Chao
    Mabrouk, Sally
    Bobba, Raja Sekhar
    Baniya, Abiral
    Wang, Mingtai
    Qiao, Quinn
    [J]. INFOMAT, 2022, 4 (07)
  • [34] Electrodeposition of lead dioxide induces the fabrication of perovskite FAPbI3 film and electron-transport-layer-free solar cells
    Li, Qiang
    Lu, Congrong
    Li, Chunhe
    Ren, Kuankuan
    Yao, Bo
    Xu, Haitao
    Liu, Shiyan
    Tan, Yongsheng
    Dou, Weidong
    Fang, Zebo
    [J]. SOLAR ENERGY, 2022, 233 : 515 - 522
  • [35] High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells
    Guan, Jiayi
    Ni, Jian
    Zhou, Xiaojun
    Liu, Yue
    Yin, Junyang
    Wang, Jinlin
    Wang, Dan
    Zhang, Yaofang
    Li, Juan
    Cai, Hongkun
    Zhang, Jianjun
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 11570 - 11580
  • [36] Salt-Based Catalyzer to Aid Heterogeneous Nucleation Enabling >23% Efficient Electron-Transport-Layer-Free Perovskite Solar Cells
    Deng, Jidong
    Huang, Xiaofeng
    Che, Yuliang
    Wang, Xiao
    Zhang, Xiaoli
    Wu, Binghui
    Yang, Li
    Zhang, Jinbao
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [37] Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability
    Lee, Kun-Mu
    Lin, Wei-Jhih
    Chen, Shih-Hsuan
    Wu, Ming-Chung
    [J]. ORGANIC ELECTRONICS, 2020, 77
  • [38] Carrier Transport Layer-Free Perovskite Solar Cells
    Wang, Liang
    Yang, Shuzhang
    Han, Qianji
    Yu, Fengyang
    Zhang, Hong
    Cai, Xiaoyong
    Zhang, Chu
    Gao, Liguo
    Ma, Tingli
    [J]. CHEMSUSCHEM, 2021, 14 (21) : 4776 - 4782
  • [39] Electron transport layer engineering with rubidium chloride alkali halide to boost the performance of perovskite absorber layer
    Abdulzahraa, Haider G.
    Mohammed, Mustafa K. A.
    Raoof, Arkan Saad Mohammed
    [J]. CURRENT APPLIED PHYSICS, 2022, 34 : 50 - 54
  • [40] Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells
    Jiang, Ershuai
    Ai, Yuclian
    Yan, Jin
    Li, Nan
    Lin, Liujin
    Wang, Zenggui
    Shou, Chunhui
    Yan, Baojie
    Zeng, Yuheng
    Sheng, Jiang
    Ye, Jichun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36727 - 36734