Ligand Binding Domain of Estrogen Receptor Alpha Preserve a Conserved Structural Architecture Similar to Bacterial Taxis Receptors
被引:2
|
作者:
Mangalath, Divya Lakshmanan
论文数: 0引用数: 0
h-index: 0
机构:
Yenepoya Univ, Yenepoya Res Ctr, Canc Res & Therapeut, Mangalore, IndiaYenepoya Univ, Yenepoya Res Ctr, Canc Res & Therapeut, Mangalore, India
Mangalath, Divya Lakshmanan
[1
]
Mohammed, Shabeer Ali Hassan
论文数: 0引用数: 0
h-index: 0
机构:
CSIR, Div Mol Microbiol & Immunol, Cent Drug Res Inst, Lucknow, Uttar Pradesh, India
Kannur Univ, Dept Biotechnol & Microbiol, Kannur, IndiaYenepoya Univ, Yenepoya Res Ctr, Canc Res & Therapeut, Mangalore, India
Mohammed, Shabeer Ali Hassan
[2
,3
]
机构:
[1] Yenepoya Univ, Yenepoya Res Ctr, Canc Res & Therapeut, Mangalore, India
[2] CSIR, Div Mol Microbiol & Immunol, Cent Drug Res Inst, Lucknow, Uttar Pradesh, India
[3] Kannur Univ, Dept Biotechnol & Microbiol, Kannur, India
It remains a mystery why estrogen hormone receptors (ERs), which are highly specific toward its endogenous hormones, are responsive to chemically distinct exogenous agents. Does it indicate that ERs are environmentally regulated? Here, we speculate that ERs would have some common structural features with prokaryotic taxis receptor responsive toward environmental signals. This study addresses the low specificity and high responsiveness of ERs toward chemically distinct exogenous substances, from an evolutionary point of view. Here, we compared the ligand binding domain (LBD) of ER alpha (alpha) with the LBDs of prokaryotic taxis receptors to check if LBDs share any structural similarity. Interestingly, a high degree of similarity in the domain structural fold architecture of ER alpha and bacterial taxis receptors was observed. The pharmacophore modeling focused on ligand molecules of both receptors suggest that these ligands share common pharmacophore features. The molecular docking studies suggest that the natural ligands of bacterial chemotaxis receptors exhibit strong interaction with human ER as well. Although phylogenetic analysis proved that these proteins are unrelated, they would have evolved independently, suggesting a possibility of convergent molecular evolution. Nevertheless, a remarkable sequence divergence was seen between these proteins even when they shared common domain structural folds and common ligand-based pharmacophore features, suggesting that the protein architecture remains conserved within the structure for a specific function irrespective of sequence identity.
机构:
NIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USANIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USA
Sanghvi, M.
Moaddel, R.
论文数: 0引用数: 0
h-index: 0
机构:
NIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USANIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USA
Moaddel, R.
Frazier, C.
论文数: 0引用数: 0
h-index: 0
机构:
NIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USANIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USA
Frazier, C.
Wainer, I. W.
论文数: 0引用数: 0
h-index: 0
机构:
NIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USANIA, Bioanalyt & Drug Discovery Unit, NIH, Gerontol Res Ctr, Baltimore, MD 21224 USA