An S-plus implementation of hidden Markov models in continuous time

被引:11
|
作者
Bureau, A
Hughes, JP
Shiboski, SC
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Grp Biostat, Berkeley, CA 94720 USA
[2] Univ Washington, Sch Publ Hlth & Community Med, Dept Biostat 357232, Seattle, WA 98195 USA
[3] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
关键词
generalized regression; longitudinal data;
D O I
10.2307/1391083
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov models (HMM) can be applied to the study of time varying unobserved categorical Variables for which only indirect measurements are available. An S-Plus module to fit HMMs in continuous time to this type of longitudinal data is presented. Covariates affecting the transition intensities of the hidden Markov process or the conditional distribution of the measured response (given the hidden states of the process) are handled under a generalized regression framework. Users can provide C subroutines specifying the parameterization of the model to adapt the software to a wide variety of data types. HMM analysis using the S-Plus module is illustrated on a dataset from a prospective study of human papillomavirus infection in young women and on simulated data.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 50 条
  • [21] Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression
    Liu, Yu-Ying
    Li, Shuang
    Li, Fuxin
    Song, Le
    Rehg, James M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [22] Calculating ordinal regression models in SAS and S-Plus
    Bender, R
    Benner, A
    BIOMETRICAL JOURNAL, 2000, 42 (06) : 677 - 699
  • [23] S-PLUS简介
    李秋丽
    陈晶
    丁岩峰
    今日科苑, 2007, (10) : 90 - 90
  • [24] S-PLUS - REJOINDER
    EAGLE, M
    JOURNAL OF CHEMOMETRICS, 1993, 7 (06) : 566 - 566
  • [25] S-PLUS FOR WINDOWS
    ZEH, JE
    STATISTICS AND COMPUTING, 1994, 4 (04) : 303 - 309
  • [26] REVIEW OF S-PLUS
    HALLMAN, J
    JOURNAL OF APPLIED ECONOMETRICS, 1993, 8 (02) : 213 - 219
  • [27] Graphics processing unit implementation of Hidden Markov models
    Gultyaeva, T. A.
    Sautin, A. S.
    Uvarov, V. E.
    2014 12TH INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONICS INSTRUMENT ENGINEERING (APEIE), 2014, : 571 - 573
  • [28] Inference of Aggregate Hidden Markov Models With Continuous Observations
    Zhang, Qinsheng
    Singh, Rahul
    Chen, Yongxin
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2377 - 2382
  • [29] Ergodic Continuous Hidden Markov Models for Workload Characterization
    Moro, Alessandro
    Mumolo, Enzo
    Nolich, Massimiliano
    2009 PROCEEDINGS OF 6TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2009), 2009, : 103 - 108
  • [30] Continuous Driver Intention Recognition with Hidden Markov Models
    Berndt, Holger
    Emmert, Joerg
    Dietmayer, Klaus
    PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2008, : 1189 - 1194