An S-plus implementation of hidden Markov models in continuous time

被引:11
|
作者
Bureau, A
Hughes, JP
Shiboski, SC
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Grp Biostat, Berkeley, CA 94720 USA
[2] Univ Washington, Sch Publ Hlth & Community Med, Dept Biostat 357232, Seattle, WA 98195 USA
[3] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
关键词
generalized regression; longitudinal data;
D O I
10.2307/1391083
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov models (HMM) can be applied to the study of time varying unobserved categorical Variables for which only indirect measurements are available. An S-Plus module to fit HMMs in continuous time to this type of longitudinal data is presented. Covariates affecting the transition intensities of the hidden Markov process or the conditional distribution of the measured response (given the hidden states of the process) are handled under a generalized regression framework. Users can provide C subroutines specifying the parameterization of the model to adapt the software to a wide variety of data types. HMM analysis using the S-Plus module is illustrated on a dataset from a prospective study of human papillomavirus infection in young women and on simulated data.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 50 条
  • [1] Continuous-time Hidden Markov models in Network Simulation
    Tang Bo
    Tan Xiaobin
    Yin Baoqun
    2008 IEEE INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2008, : 667 - 670
  • [2] Maximum likelihood estimator for hidden Markov models in continuous time
    Chigansky P.
    Statistical Inference for Stochastic Processes, 2009, 12 (2) : 139 - 163
  • [3] Bayesian clustering for continuous-time hidden Markov models
    Luo, Yu
    Stephens, David A.
    Buckeridge, David L.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 134 - 156
  • [4] Stylised facts of financial time series and hidden Markov models in continuous time
    Nystrup, Peter
    Madsen, Henrik
    Lindstrtom, Erik
    QUANTITATIVE FINANCE, 2015, 15 (09) : 1531 - 1541
  • [5] Filterbased stochastic volatility in continuous-time hidden Markov models
    Krishnamurthy, Vikram
    Leoff, Elisabeth
    Sass, Joern
    ECONOMETRICS AND STATISTICS, 2018, 6 : 1 - 21
  • [6] Change point estimation for continuous-time hidden Markov models
    Elliott, Robert J.
    Deng, Jia
    SYSTEMS & CONTROL LETTERS, 2013, 62 (02) : 112 - 114
  • [7] Continuous-time hidden Markov models for network performance evaluation
    Wei, W
    Wang, B
    Towsley, D
    PERFORMANCE EVALUATION, 2002, 49 (1-4) : 129 - 146
  • [8] S-PLUS
    DENHAM, MC
    JOURNAL OF CHEMOMETRICS, 1993, 7 (06) : 559 - 566
  • [10] S-PLUS
    LOVIE, P
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1991, 44 : 237 - 240