Local Antimagic Chromatic Number for Copies of Graphs

被引:12
|
作者
Baca, Martin [1 ]
Semanicova-Fenovcikova, Andrea [1 ]
Wang, Tao-Ming [2 ]
机构
[1] Tech Univ, Dept Appl Math & Informat, Kosice 04200, Slovakia
[2] Tunghai Univ, Dept Appl Math, Taichung 40704, Taiwan
关键词
local antimagic labeling; local antimagic chromatic number; copies of graphs; GRIDS;
D O I
10.3390/math9111230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a graph G = (V ,E) using every label from the set {1,2, ... vertical bar E(G)vertical bar} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [32] Local antimagic chromatic number of certain classes of trees
    Sarath, Vs.
    Prajeesh, A.V.
    2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023, 2023,
  • [33] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002
  • [34] On edge chromatic number related to local antimagic labeling of some trees
    Agustin, I. H.
    Dafik
    Alfarisi, R.
    Kurniawati, E. Y.
    Marsidi
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [35] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [36] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [37] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [38] On the vertex local antimagic total labeling chromatic number of G ⊙ K2
    Kurniawati, E. Y.
    Agustin, I. H.
    Dafik
    Marsidi
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [39] Local distance antimagic cromatic number of join product of graphs with cycles or paths
    Shiu, Wai Chee
    Lau, Gee-Choon
    Nalliah, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 788 - 802
  • [40] On local distance antimagic labeling of graphs
    Handa, Adarsh Kumar
    Godinho, Aloysius
    Singh, Tarkeshwar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 91 - 96