Towards reliable diagnostics of prostate cancer via breath

被引:16
|
作者
Maiti, K. S. [1 ,2 ]
Fill, E. [2 ]
Strittmatter, F. [3 ]
Volz, Y. [3 ]
Sroka, R. [3 ,4 ]
Apolonski, A. [1 ,2 ,4 ,5 ,6 ]
机构
[1] Ludwig Maximilians Univ Munchen, Lehrstuhl Expt Phys, Am Coulombwall 1, D-85748 Garching, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Ludwig Maximilians Univ Munchen, Urolog Klin & Poliklin Klinikums, D-81377 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, LIFE Ctr, Laser Forschungslab, Univ Hosp, D-82152 Planegg, Germany
[5] Novosibirsk State Univ, Novosibirsk 630090, Russia
[6] Inst Automat & Electrometry SB RAS, Novosibirsk 630090, Russia
关键词
D O I
10.1038/s41598-021-96845-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early detection of cancer is a key ingredient for saving many lives. Unfortunately, cancers of the urogenital system are difficult to detect at early stage. The existing noninvasive diagnostics of prostate cancer (PCa) suffer from low accuracy (< 70%) even at advanced stages. In an attempt to improve the accuracy, a small breath study of 63 volunteers representing three groups: (1) of 19 healthy, (2) 28 with PCa, (3) with 8 kidney cancer (KC) and 8 bladder cancer (BC) was performed. Ultrabroadband mid-infrared Fourier absorption spectroscopy revealed eight spectral ranges (SRs) that differentiate the groups. The resulting accuracies of supervised analyses exceeded 95% for four SRs in distinguishing (1) vs (2), three for (1) vs (3) and four SRs for (1) vs (2) + (3). The SRs were then attributed to volatile metabolites. Their origin and involvement in urogenital carcinogenesis are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Genomic approaches to the development of prostate cancer diagnostics
    Shujath Ali
    Yongming Sun
    Carrie Drumright
    Luis Carretero
    Christina Tran
    Anton Nguyen
    Dan Medynski
    Yan Liu
    Vu Viet Hoang
    Brandon Liang
    Herve Recipon
    Robert Cafferkey
    Roberto Macina
    Nature Genetics, 2001, 27 (Suppl 4) : 38 - 38
  • [22] CANCER OF THE PROSTATE - OPERATIVE POSSIBILITIES IN DIAGNOSTICS AND THERAPEUTICS
    HEISING, J
    ALLHOFF, P
    ENGELKING, R
    MUNCHENER MEDIZINISCHE WOCHENSCHRIFT, 1979, 121 (09): : 294 - 297
  • [23] Contemporary and past challenges of prostate cancer diagnostics
    Kaipia, Antti
    Riikonen, Jarno
    SCANDINAVIAN JOURNAL OF UROLOGY, 2017, 51 (03) : 193 - 193
  • [24] Diagnostics and individualized treatment of localized prostate cancer
    Wirth, M
    Frohner, M
    UROLOGE A, 2000, 39 (06): : 578 - 587
  • [25] Artificial intelligence for prostate cancer histopathology diagnostics
    Sandoval, Victor
    Chuang, Zachary
    Power, Nicholas
    Chin, Joseph L. K.
    CUAJ-CANADIAN UROLOGICAL ASSOCIATION JOURNAL, 2022, 16 (12): : 439 - 441
  • [26] New ultrasound technologies for the diagnostics of prostate cancer
    De Zordo, T.
    Ladurner, M.
    Horninger, W.
    Heijmink, S. W.
    Jaschke, W.
    Aigner, F.
    Frauscher, F.
    RADIOLOGE, 2011, 51 (11): : 938 - +
  • [27] Prostate cancer: rapid developments in diagnostics and treatment
    Graefen, M
    Huland, H
    UROLOGE A, 2003, 42 (09): : 1170 - 1171
  • [28] Glycoprofiling: a key to early prostate cancer diagnostics
    Belicky, Stefan
    Tkac, Jan
    2015 9TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2015, : 520 - 524
  • [29] Are multiple markers the future of prostate cancer diagnostics?
    Mikolajczyk, SD
    Song, Y
    Wong, JR
    Matson, RS
    Rittenhouse, HG
    CLINICAL BIOCHEMISTRY, 2004, 37 (07) : 519 - 528
  • [30] Ethical Principles in the Analysis of Prostate Cancer Diagnostics
    Ebbesen, Mette
    Sorensen, Karina Dalsgaard
    Pedersen, Bodil Ginnerup
    Andersen, Svend
    CANCER INVESTIGATION, 2022, 40 (09) : 799 - 810