Grothendieck Rings of Towers of Twisted Generalized Weyl Algebras

被引:2
|
作者
Hartwig, Jonas T. [1 ]
Rosso, Daniele [2 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Indiana Univ Northwest, Dept Math & Actuarial Sci, Gary, IN 46408 USA
关键词
Twisted generalized Weyl algebras; Weight modules; Grothendieck group; Tensor product; SIMPLE WEIGHT MODULES;
D O I
10.1007/s10468-021-10070-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Twisted generalized Weyl algebras (TGWAs) A(R, sigma, t) are defined over a base ring R by parameters sigma and t, where sigma is an n-tuple of automorphisms, and t is an n-tuple of elements in the center of R. We show that, for fixed R and sigma, there is a natural algebra map A(R, sigma, tt ') -> A(R, sigma, t) circle times(R) A(R, sigma, t '). This gives a tensor product operation on modules, inducing a ring structure on the direct sum (over all t) of the Grothendieck groups of the categories of weight modules for A(R,sigma,t). We give presentations of these Grothendieck rings for n = 1,2, when R = C[z]. As a consequence, for n = 1, any indecomposable module for a TGWA can be written as a tensor product of indecomposable modules over the usual Weyl algebra. In particular, any finite-dimensional simple module over sl(2) is a tensor product of two Weyl algebra modules.
引用
收藏
页码:1345 / 1377
页数:33
相关论文
共 50 条
  • [21] Toroidal Grothendieck rings and cluster algebras
    Laura Fedele
    David Hernandez
    Mathematische Zeitschrift, 2022, 300 : 377 - 420
  • [22] Toroidal Grothendieck rings and cluster algebras
    Fedele, Laura
    Hernandez, David
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 377 - 420
  • [23] Locally finite simple weight modules over twisted generalized Weyl algebras
    Hartwig, Jonas T.
    JOURNAL OF ALGEBRA, 2006, 303 (01) : 42 - 76
  • [24] GENERALIZED WEYL ALGEBRAS
    NOUAZE, Y
    REVOY, P
    BULLETIN DES SCIENCES MATHEMATIQUES, 1972, 96 (01): : 27 - &
  • [25] Weyl modules for the twisted loop algebras
    Chari, Vyjayanthi
    Fourier, Ghislain
    Senesi, Prasad
    JOURNAL OF ALGEBRA, 2008, 319 (12) : 5016 - 5038
  • [26] On the Grothendieck rings of generalized Drinfeld doubles
    Burciu, Sebastian
    JOURNAL OF ALGEBRA, 2017, 486 : 14 - 35
  • [27] Quantum Grothendieck rings as quantum cluster algebras
    Bittmann, Lea
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (01): : 161 - 197
  • [28] Quantum Grothendieck rings and derived Hall algebras
    Hernandez, David
    Leclerc, Bernard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 : 77 - 126
  • [29] TWISTED GENERALIZED WEYL ALGEBRAS, POLYNOMIAL CARTAN MATRICES AND SERRE-TYPE RELATIONS
    Hartwig, Jonas T.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4375 - 4389
  • [30] Derivations of generalized Weyl algebras
    Yucai Su
    Science in China Series A: Mathematics, 2003, 46 (3): : 346 - 354