Grothendieck Rings of Towers of Twisted Generalized Weyl Algebras

被引:2
|
作者
Hartwig, Jonas T. [1 ]
Rosso, Daniele [2 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Indiana Univ Northwest, Dept Math & Actuarial Sci, Gary, IN 46408 USA
关键词
Twisted generalized Weyl algebras; Weight modules; Grothendieck group; Tensor product; SIMPLE WEIGHT MODULES;
D O I
10.1007/s10468-021-10070-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Twisted generalized Weyl algebras (TGWAs) A(R, sigma, t) are defined over a base ring R by parameters sigma and t, where sigma is an n-tuple of automorphisms, and t is an n-tuple of elements in the center of R. We show that, for fixed R and sigma, there is a natural algebra map A(R, sigma, tt ') -> A(R, sigma, t) circle times(R) A(R, sigma, t '). This gives a tensor product operation on modules, inducing a ring structure on the direct sum (over all t) of the Grothendieck groups of the categories of weight modules for A(R,sigma,t). We give presentations of these Grothendieck rings for n = 1,2, when R = C[z]. As a consequence, for n = 1, any indecomposable module for a TGWA can be written as a tensor product of indecomposable modules over the usual Weyl algebra. In particular, any finite-dimensional simple module over sl(2) is a tensor product of two Weyl algebra modules.
引用
收藏
页码:1345 / 1377
页数:33
相关论文
共 50 条