Projective Freeness of Algebras of Real Symmetric Functions

被引:0
|
作者
Sasane, Amol [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Real Banach algebras; Projective free rings; Serre's conjecture; Real symmetric function algebras; Control theory; A(R)(D); STABILIZATION; RINGS;
D O I
10.1007/s11785-011-0165-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D-n := {z = (z(1),...,z(n)) is an element of C-n : vertical bar z(j)vertical bar < 1, j = 1,...,n}, and let <(D)over bar>(n) denote its closure in C-n. Consider the ring C-r((D) over bar (n); C) = {f : (D) over bar (n) -> C : f is continuous and f (z) = <(f<(z)over bar>)over bar> (z is an element of (D) over bar (n))} with pointwise operations, where u is used appropriately to denote both (componentwise) complex conjugation and closure. It is shown that C-r((D) over bar (n); C) is projective free, that is, finitely generated projective modules over C-r((D) over bar (n); C) are free. Let A denote the polydisc algebra, that is, the set of all continuous functions defined on (D) over bar (n) that are holomorphic in D-n. For N a positive integer, let partial derivative(-N) A denote the algebra of functions f is an element of A whose complex partial derivatives of all orders up to N belong to A. We show the projective freeness of each of the real symmetric algebras partial derivative(-N) A(r) = {f is an element of partial derivative(-N) A : f (z) = <(f<(z)over bar>)over bar> (z is an element of (D) over bar (n))}.
引用
收藏
页码:465 / 475
页数:11
相关论文
共 50 条
  • [21] SYMMETRIC CONTINUITY OF REAL FUNCTIONS
    BELNA, CL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (01) : 99 - 102
  • [22] Noncommutative symmetric functions and combinatorial Hopf algebras
    Thibon, Jean-Yves
    ASYMPTOTICS IN DYNAMICS, GEOMETRY AND PDES: GENERALIZED BOREL SUMMATION, VOL I, 2011, 12 : 219 - 258
  • [23] SPLITTING ALGEBRAS, SYMMETRIC FUNCTIONS AND GALOIS THEORY
    Ekedahl, T.
    Laksov, D.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2005, 4 (01) : 59 - 75
  • [24] SOME ALGEBRAS OF SYMMETRIC ANALYTIC FUNCTIONS AND THEIR SPECTRA
    Chernega, Iryna
    Galindo, Pablo
    Zagorodnyuk, Andriy
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 125 - 142
  • [25] Algebras of symmetric holomorphic functions on lp.
    Allencar, R
    Aron, R
    Galindo, P
    Zagorodnyuk, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 55 - 64
  • [26] Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions
    Burtnyak, I. V.
    Chopyuk, Yu. Yu.
    Vasylyshyn, S. I.
    Vasylyshyn, T. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 411 - 419
  • [27] Spectra of algebras of symmetric and subsymmetric analytic functions
    Zagorodnyuk, A. V.
    Chernega, I. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2010, 2 (02) : 31 - 38
  • [28] THE SPECTRA OF ALGEBRAS OF GROUP-SYMMETRIC FUNCTIONS
    Garcia, Domingo
    Maestre, Manuel
    Zalduendo, Ignacio
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 609 - 623
  • [29] Symmetric Sextics in the Real Projective Plane and Auxiliary Conics
    I. V. Itenberg
    V. S. Itenberg
    Journal of Mathematical Sciences, 2004, 119 (1) : 78 - 85
  • [30] ON REAL SIMPLE LEFT-SYMMETRIC ALGEBRAS
    Kong, Xiaoli
    Bai, Chengming
    Meng, Daoji
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (05) : 1641 - 1668