Under-Foliage Object Imaging Using SAR Tomography and Polarimetric Spectral Estimators

被引:119
|
作者
Huang, Yue [1 ]
Ferro-Famil, Laurent [1 ]
Reigber, Andreas [2 ]
机构
[1] Univ Rennes 1, SAR Polarimetry, Holog Interferometry & Radargrammetry Team, Inst Elect & Telecommun Rennes, F-35042 Rennes, France
[2] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany
来源
关键词
Multibaseline PolInSAR; SAR tomography; underfoliage imaging; MODEL ORDER SELECTION; MAXIMUM-LIKELIHOOD; SIGNALS; FREQUENCY;
D O I
10.1109/TGRS.2011.2171494
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper addresses the imaging of objects located under a forest cover using polarimetric synthetic aperture radar tomography (POLTOMSAR) at L-band. High-resolution spectral estimators, able to accurately discriminate multiple scattering centers in the vertical direction, are used to separate the response of objects and vehicles embedded in a volumetric background. A new polarimetric spectral analysis technique is introduced and is shown to improve the estimation accuracy of the vertical position of both artificial scatterers and natural environments. This approach provides optimal polarimetric features that may be used to further characterize the objects under analysis. The effectiveness of this novel technique for POLTOMSAR is demonstrated using fully polarimetric L-band airborne data sets acquired by the German Aerospace Center (DLR)'s E-SAR system over the test site in Dornstetten, Germany.
引用
收藏
页码:2213 / 2225
页数:13
相关论文
共 50 条
  • [21] Integration of SAR polarimetric parameters and multi-spectral data for object-based land cover classification
    Zhao Y.
    Jiang M.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (05): : 609 - 617
  • [22] SAR Tomography Imaging Using Sparse Bayesian Learning
    Min, Rui
    Hu, Yating
    Pi, Yiming
    Cao, Zongjie
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2012, E95B (01) : 354 - 357
  • [23] Integration of SAR Polarimetric Features and Multi-spectral Data for Object-Based Land Cover Classification
    Yi ZHAO
    Mi JIANG
    Zhangfeng MA
    Journal of Geodesy and Geoinformation Science, 2019, 2 (04) : 64 - 72
  • [24] Polarimetric object-level SAR imaging method with canonical scattering characterisation by exploiting joint sparsity
    Yang, Yue
    Cong, Xunchao
    Gui, Guan
    Long, Keyu
    Huang, Zhongtao
    Wan, Qun
    IET RADAR SONAR AND NAVIGATION, 2017, 11 (10): : 1558 - 1566
  • [25] Segmentation of polarimetric SAR data using contour information via spectral graph partitioning
    Ersahin, Kaan
    Cumming, Ian G.
    Ward, Rabab K.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2240 - 2243
  • [26] Spectral-spatial classification of polarimetric SAR data using morphological attribute profiles
    Marpu, Prashanth Reddy
    Chen, Kun-Shan
    Benediktsson, Jon Atli
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [27] TROPICAL FOREST STRUCTURE ESTIMATION USING POLARIMETRIC SAR TOMOGRAPHY AT P-BAND
    Huang, Yue
    Ferro-Famil, Laurent
    Neumann, Maxim
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7593 - 7596
  • [28] An investigation of the performances of polarimetric target decompositions using GB-SAR imaging
    Demirci, Sevket
    Ozdemir, Caner
    INTERNATIONAL JOURNAL OF ENGINEERING AND GEOSCIENCES, 2021, 6 (01): : 9 - 19
  • [29] SAR moving object imaging using sparsity imposing priors
    Onhon, N. Ozben
    Cetin, Mujdat
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2017,
  • [30] Snapshot spectral polarimetric light field imaging using a single detector
    Lv, Xiaobo
    Li, Yiwei
    Zhu, Shuaishuai
    Guo, Xinmin
    Zhang, Jianlong
    Lin, Jie
    Jin, Peng
    OPTICS LETTERS, 2020, 45 (23) : 6522 - 6525