Functional Series Representable as a Sum of Two Universal Series

被引:1
|
作者
Tetunashvili, Sh. [1 ,2 ]
机构
[1] Tbilisi State Univ, Razmadze Math Inst, GE-0177 Tbilisi, Georgia
[2] Georgian Tech Univ, GE-0175 Tbilisi, Georgia
关键词
D O I
10.1134/S106456241706014X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Series with respect to systems Phi = {phi(n) (x)}(n=1)(infinity) of measurable and almost everywhere finite functions are discussed. A necessary and sufficient condition for representing any series with respect to a system Phi as a sum of two universal series is formulated. A consequence of the condition is that any series with respect to an arbitrary complete and orthonormal system Phi is a sum of two universal series.
引用
收藏
页码:578 / 579
页数:2
相关论文
共 50 条
  • [21] The integral analog of a series with a two-point sum range
    O. S. Osipov
    Siberian Mathematical Journal, 2009, 50 : 1062 - 1069
  • [22] Some Properties of the Functions Representable as Fractional Power Series
    Groza, Ghiocel
    Jianu, Marilena
    Mierlus-Mazilu, Ion
    MATHEMATICS, 2024, 12 (07)
  • [23] UNIVERSAL TRIGONOMETRIC SERIES
    EDGE, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 29 (03) : 507 - &
  • [24] UNIVERSAL COVERING SERIES
    PASSELL, N
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (07): : 780 - &
  • [25] On universal Taylor series
    Kahane, JP
    Melas, A
    Nestoridis, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 1003 - 1006
  • [26] Generalized universal series
    S. Charpentier
    A. Mouze
    V. Munnier
    Monatshefte für Mathematik, 2016, 179 : 15 - 40
  • [27] Universal Fourier Series
    Grigoryan, M. G.
    MATHEMATICAL NOTES, 2020, 108 (1-2) : 282 - 285
  • [28] Universal Taylor series
    Nestoridis, V
    ANNALES DE L INSTITUT FOURIER, 1996, 46 (05) : 1293 - &
  • [29] ON UNIVERSAL FUNCTIONS AND SERIES
    BUCZOLICH, Z
    ACTA MATHEMATICA HUNGARICA, 1987, 49 (3-4) : 403 - 414
  • [30] Universal Laurent series
    Costakis, G
    Nestoridis, V
    Papadoperakis, I
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 : 571 - 583