Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images

被引:55
|
作者
Seghier, Mohamed L. [1 ]
Kolanko, Magdalena A. [2 ]
Leff, Alexander P. [3 ]
Jaeger, Hans R. [2 ]
Gregoire, Simone M. [2 ]
Werring, David J. [2 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London, England
[2] UCL, Inst Neurol, Stroke Res Grp, Dept Brain Repair & Rehabil, London, England
[3] UCL, Inst Cognit Neurosci, London, England
来源
PLOS ONE | 2011年 / 6卷 / 03期
基金
英国惠康基金;
关键词
CEREBRAL AMYLOID ANGIOPATHY; BRAIN MICROBLEEDS; UNIFIED SEGMENTATION; PREVALENCE; AGREEMENT; RISK;
D O I
10.1371/journal.pone.0017547
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Methodology/Principal Findings: Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (>= 2) lobar microbleeds. Conclusions/Significance: MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An Automated Method of Segmentation for Tumor Detection by Neutrosophic Sets and Morphological Operations Using MR Images
    Kaur, Gursangeet
    Kaur, Hardeep
    [J]. 2016 CONFERENCE ON EMERGING DEVICES AND SMART SYSTEMS (ICEDSS), 2016, : 155 - 160
  • [2] Automated vertebra detection and segmentation from the whole spine MR images
    Peng, Zhigang
    Zhong, Jia
    Wee, William
    Lee, Jing-Huei
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2527 - 2530
  • [3] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    [J]. Scientific Reports, 11
  • [4] Automated segmentation of endometrial cancer on MR images using deep learning
    Hodneland, Erlend
    Dybvik, Julie A.
    Wagner-Larsen, Kari S.
    Solteszova, Veronika
    Munthe-Kaas, Antonella Z.
    Fasmer, Kristine E.
    Krakstad, Camilla
    Lundervold, Arvid
    Lundervold, Alexander S.
    Salvesen, Oyvind
    Erickson, Bradley J.
    Haldorsen, Ingfrid
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Stable Automated Segmentation of Liver MR Elastography Images for Clinical Stiffness Measurement
    Dzyubak, Bogdan
    Venkatesh, Sudhakar K.
    Glaser, Kevin
    Yin, Meng
    Talwalkar, Jayant
    Chen, Jun
    Manduca, Armando
    Ehman, Richard L.
    [J]. MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672
  • [6] Automated multimodal segmentation of acute ischemic stroke lesions on clinical MR images
    Moon, Hae Sol
    Heffron, Lindsay
    Mahzarnia, Ali
    Obeng-Gyasi, Barnabas
    Holbrook, Matthew
    Badea, Cristian T.
    Feng, Wuwei
    Badea, Alexandra
    [J]. MAGNETIC RESONANCE IMAGING, 2022, 92 : 45 - 57
  • [7] Automated segmentation of SAS images using the mean-standard deviation plane for the detection of underwater mines
    Maussang, F
    Chanussot, J
    Hétet, A
    [J]. OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 2155 - 2160
  • [8] Automated Microaneurysms Detection in Fundus Images Using Image Segmentation
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    [J]. 2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 19 - 23
  • [9] Automated segmentation of MR brain images using 3-dimensional clustering
    Yoon, OK
    Kwak, DM
    Kim, BS
    Kim, DW
    Park, KH
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2002, E85D (04) : 773 - 781
  • [10] Automated Breast Segmentation of Fat and Water MR Images Using Dynamic Programming
    Rosado-Toro, Jose A.
    Barr, Tomoe
    Galons, Jean-Philippe
    Marron, Marilyn T.
    Stopeck, Alison
    Thomson, Cynthia
    Thompson, Patricia
    Carroll, Danielle
    Wolf, Eszter
    Altbach, Maria I.
    Rodriguez, Jeffrey J.
    [J]. ACADEMIC RADIOLOGY, 2015, 22 (02) : 139 - 148