Validation of gas temperature measurements by OES in an atmospheric air glow discharge with water electrode using Rayleigh scattering

被引:48
|
作者
Verreycken, T. [1 ,2 ]
van Gessel, A. F. H. [1 ]
Pageau, A. [1 ,3 ]
Bruggeman, P. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[3] Univ Orleans, Ecole Polytech, Lab Elect & Opt, F-45072 Orleans 2, France
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2011年 / 20卷 / 02期
关键词
ENERGY-TRANSFER; CROSS-SECTIONS; PRESSURE; LIQUID; MOLECULES; SPECTRUM; PLASMAS;
D O I
10.1088/0963-0252/20/2/024002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rayleigh scattering is used to determine the gas temperature of an atmospheric pressure dc excited glow discharge in air with a water electrode. The obtained temperatures are compared with calculated rotational temperatures measured by optical emission spectroscopy of OH(A-X) and N(2)(C-B). At a current of 15 mA a deviation is found between Trot(OH) and the gas temperature obtained from Rayleigh scattering of about 1000 K. The gas temperatures obtained from Rayleigh scattering, N(2)(C) and OH(A) in the positive column are, respectively, 2600 +/- 100 K, 2700 +/- 150K and 3600 +/- 200 K. It is shown that the rotational temperature of N(2)(C) is a reliable measurement of the gas temperature while this is not the case for OH(A). The results are explained in the context of quenching processes of the excited states. Spatially resolved gas temperatures in both longitudinal and radial directions are presented. The observed strong temperature gradients near the electrodes are checked to be consistent with the power dissipation and the heat transfer in the discharge. The effect of the polarity of the water electrode and filamentation on the measured temperatures is discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Calculation of time dependence of the electrode surface temperature in the cathode spot of atmospheric pressure normal glow discharge
    Kristya, V. I.
    JOURNAL OF SURFACE INVESTIGATION-X-RAY SYNCHROTRON AND NEUTRON TECHNIQUES, 2012, 6 (02) : 255 - 258
  • [42] Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes
    L. Prevosto
    H. Kelly
    B. Mancinelli
    Plasma Chemistry and Plasma Processing, 2016, 36 : 973 - 992
  • [43] Three-dimensional gas temperature measurements in atmospheric pressure microdischarges using Raman scattering
    Belostotskiy, Sergey G.
    Wang, Qiang
    Donnelly, Vincent M.
    Economou, Demetre J.
    Sadeghi, Nader
    APPLIED PHYSICS LETTERS, 2006, 89 (25)
  • [44] Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes
    Prevosto, L.
    Kelly, H.
    Mancinelli, B.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (04) : 973 - 992
  • [45] Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode
    Takaki, K
    Hosokawa, M
    Sasaki, T
    Mukaigawa, S
    Fujiwara, T
    APPLIED PHYSICS LETTERS, 2005, 86 (15) : 1 - 3
  • [46] Coherent Rayleigh-Brillouin scattering measurement of atmospheric atomic and molecular gas temperature
    Graul, Jacob
    Lilly, Taylor
    OPTICS EXPRESS, 2014, 22 (17): : 20117 - 20129
  • [47] Production of pulse glow discharge in atmospheric pressure nitrogen using needle-array electrode
    Takaki, Koichi
    Kirihara, Hidekazu
    Noda, Chiharu
    Mukaigawa, Seiji
    Fujiwara, Tamiya
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (10B): : 8241 - 8245
  • [48] Diffuse and spotted anode layers in an atmospheric pressure glow discharge with a water electrode and miniature argon flow
    Li, Xuechen
    Kang, Pengcheng
    Gao, Kun
    Zhou, Shuai
    Wu, Kaiyue
    Jia, Pengying
    PLASMA PROCESSES AND POLYMERS, 2020, 17 (07)
  • [49] Generation and control of electrolyte cathode atmospheric glow discharge using miniature gas flow
    Shirai, Naoki
    Nakazawa, Masato
    Ibuka, Shinji
    Ishii, Shozo
    ELECTRICAL ENGINEERING IN JAPAN, 2012, 178 (04) : 8 - 15
  • [50] Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter
    Yalin, AP
    Miles, RB
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2000, 14 (02) : 210 - 215