Variable selection for semiparametric regression models with iterated penalisation

被引:2
|
作者
Dai, Ying [1 ]
Ma, Shuangge [1 ]
机构
[1] Yale Univ, Sch Publ Hlth, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
iterated penalisation; variable selection; semiparametric regression; ORACLE PROPERTIES; ADAPTIVE LASSO; LINEAR-MODELS; RISK;
D O I
10.1080/10485252.2012.661054
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semiparametric regression models with multiple covariates are commonly encountered. When there are covariates that are not associated with a response variable, variable selection may lead to sparser models, more lucid interpretations and more accurate estimation. In this study, we adopt a sieve approach for the estimation of nonparametric covariate effects in semiparametric regression models. We adopt a two-step iterated penalisation approach for variable selection. In the first step, a mixture of Lasso and group Lasso penalties are employed to conduct the first-round variable selection and obtain the initial estimate. In the second step, a mixture of weighted Lasso and weighted group Lasso penalties, with weights constructed using the initial estimate, are employed for variable selection. We show that the proposed iterated approach has the variable selection consistency property, even when the number of unknown parameters diverges with sample size. Numerical studies, including simulation and analysis of a diabetes data set, show satisfactory performance of the proposed approach.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [31] Simultaneous variable selection for heteroscedastic regression models
    ZHANG ZhongZhan1 & WANG DaRong2 1College of Applied Sciences
    2The Pilot College
    [J]. Science China Mathematics, 2011, 54 (03) : 515 - 530
  • [32] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [33] Variable selection in functional regression models: A review
    Aneiros, German
    Novo, Silvia
    Vieu, Philippe
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [34] Simultaneous variable selection for heteroscedastic regression models
    ZhongZhan Zhang
    DaRong Wang
    [J]. Science China Mathematics, 2011, 54 : 515 - 530
  • [35] Variable selection in finite mixture of regression models
    Khalili, Abbas
    Chen, Jiahua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 1025 - 1038
  • [36] Consistent variable selection for functional regression models
    Collazos, Julian A. A.
    Dias, Ronaldo
    Zambom, Adriano Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 63 - 71
  • [37] Simultaneous variable selection for heteroscedastic regression models
    Zhang ZhongZhan
    Wang DaRong
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 515 - 530
  • [38] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    [J]. Computational Statistics, 2019, 34 : 469 - 487
  • [39] VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2010, 20 (01) : 149 - 165
  • [40] BANDWIDTH SELECTION IN SEMIPARAMETRIC ESTIMATION OF CENSORED LINEAR-REGRESSION MODELS
    HALL, P
    HOROWITZ, JL
    [J]. ECONOMETRIC THEORY, 1990, 6 (02) : 123 - 150