New Lax representation and integrable discretization of the relativistic Volterra lattice

被引:9
|
作者
Zhu, ZN
Huang, HC
Xue, WM
机构
[1] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
关键词
the relativistic Volterra lattice; Lax representation; integrable discretization;
D O I
10.1143/JPSJ.68.771
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a proper 2 x 2 discrete isospectral problem, the relativistic Volterra lattice introduced by Suris and Ragnisco is rederived. So, a neu Lax matrix for the relativistic Volterra lattice is given. Integrable discretization of the relativistic Volterra lattice is also obtained.
引用
收藏
页码:771 / 775
页数:5
相关论文
共 50 条
  • [21] LAX EQUATION REPRESENTATION OF CERTAIN COMPLETELY INTEGRABLE SYSTEMS
    FAIRBANKS, LD
    COMPOSITIO MATHEMATICA, 1988, 68 (01) : 31 - 40
  • [22] Twisted reductions of integrable lattice equations, and their Lax representations
    Ormerod, Christopher M.
    van der Kamp, Peter H.
    Hietarinta, Jarmo
    Quispel, G. R. W.
    NONLINEARITY, 2014, 27 (06) : 1367 - 1390
  • [23] A family of integrable maps associated with the Volterra lattice
    Hone, A.N.W.
    Roberts, J.A.G.
    Vanhaecke, P.
    arXiv, 2023,
  • [24] A family of integrable maps associated with the Volterra lattice
    Hone, A. N. W.
    Roberts, J. A. G.
    Vanhaecke, P.
    NONLINEARITY, 2024, 37 (09)
  • [25] Lax representation and dynamical r-matrix for a new Neumann type integrable model
    Chen, JB
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 519 - 526
  • [26] A new non-isospectral integrable couplings for generalized Volterra lattice hierarchy
    Yu, Fa-Jun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 656 - 660
  • [27] Integrable Extended Blaszak–Marciniak Lattice and Another Extended Lattice with Their Lax Pairs
    X. B. Hu
    D. L. Wang
    H. W. Tam
    Theoretical and Mathematical Physics, 2001, 127 : 738 - 743
  • [28] Integrable nonholonomic deformation of modified Volterra lattice equation
    Zhao, Hai-qiong
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 286 - 291
  • [29] The Liouville integrability of integrable couplings of Volterra lattice equation
    Zhao, Qiu-lan
    Xu, Xi-Xiang
    Li, Xin-Yue
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1664 - 1675
  • [30] Integrable extended Blaszak-Marciniak lattice and another extended lattice with their Lax pairs
    Hu, XB
    Wang, DL
    Tam, HW
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 738 - 743