On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:107
|
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [41] p-nilpotency criteria for some verbal subgroups
    Contreras-Rojas, Yerko
    Grazian, Valentina
    Monetta, Carmine
    JOURNAL OF ALGEBRA, 2022, 609 : 926 - 936
  • [42] A p-nilpotency criterion for finite groups
    Diaz Ramos, A.
    Viruel, A.
    ACTA MATHEMATICA HUNGARICA, 2019, 157 (01) : 154 - 157
  • [43] A CRITERION OF p-NILPOTENCY OF FINITE GROUPS
    Zhang, Xinjian
    Li, Xianhua
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3652 - 3657
  • [44] On p-nilpotency and supersolvability of finite groups
    Meng, Xiaohan
    Chen, Ruifang
    Zhao, Xianhe
    RICERCHE DI MATEMATICA, 2025,
  • [45] On p-nilpotency of finite groups with some c-supplemented subgroups of prime power order
    Li, YM
    Wang, YM
    Wei, HQ
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (1-2): : 77 - 88
  • [46] c*-Quasinormally embedded subgroups of finite groups
    Li, Changwen
    Huang, Jianhong
    Hu, Bin
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (04) : 703 - 716
  • [47] A p-nilpotency criterion for finite groups
    A. Díaz Ramos
    A. Viruel
    Acta Mathematica Hungarica, 2019, 157 : 154 - 157
  • [48] A note on p-nilpotency of finite groups
    Li, Changwen
    Huang, Jianhong
    Hu, Bin
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 253 - 258
  • [49] Sylowizers and p-nilpotency in finite groups
    Zhang, Boru
    Lu, Jiakuan
    Meng, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [50] c*-Quasinormally embedded subgroups of finite groups
    Changwen Li
    Jianhong Huang
    Bin Hu
    Frontiers of Mathematics in China, 2012, 7 : 703 - 716