On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:107
|
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [1] On p-nilpotency of finite groups with some subgroups π-quasinormally embedded
    Yangming Li
    Yanming Wang
    Huaquan Wei
    Acta Mathematica Hungarica, 2005, 108 : 283 - 298
  • [2] π-Quasinormally embedded subgroups and p-nilpotency of finite groups
    Xu, Yong
    Chen, Guiyun
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 421 - 426
  • [3] On Hall normally embedded subgroups and the p-nilpotency of finite groups
    He, Xuanli
    Wang, Jing
    Sun, Qinhui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1428 - 1437
  • [4] m-embedded Subgroups and p-nilpotency of Finite Groups
    Xu, Yong
    Zhang, Xinjian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 884 - 889
  • [5] The p-Nilpotency of Finite Groups with Some Weakly Pronormal Subgroups
    Jianjun Liu
    Jian Chang
    Guiyun Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 805 - 816
  • [6] The p-nilpotency of finite groups with some CSS-subgroups
    Diao, Qianyu
    Liu, Jianjun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (10)
  • [7] The p-Nilpotency of Finite Groups with Some Weakly Pronormal Subgroups
    Liu, Jianjun
    Chang, Jian
    Chen, Guiyun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (03) : 805 - 816
  • [8] On p-nilpotency and minimal subgroups of finite groups
    Guo, XY
    Shum, KP
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 176 - 186
  • [9] On p-nilpotency and minimal subgroups of finite groups
    郭秀云
    K.P.Shum
    Science China Mathematics, 2003, (02) : 176 - 186
  • [10] On p-nilpotency and minimal subgroups of finite groups
    Guo Xiuyun
    K. P. Shum
    Science in China Series B: Chemistry, 2003, 46 (2): : 176 - 186