Quantifying prognosis severity of COVID-19 patients from deep learning based analysis of CT chest images

被引:7
|
作者
Rana, Ashish [1 ]
Singh, Harpreet [1 ]
Mavuduru, Ravimohan [2 ]
Pattanaik, Smita [2 ]
Rana, Prashant Singh [1 ]
机构
[1] TIET, Dept Comp Sci & Engn, Patiala, Punjab, India
[2] PGIMER, Dept Urol & Pharmacol, Chandigarh, India
关键词
COVID-19; detection; prognosis; Single shot detection network; Siamese neural network; DISEASE; 2019; COVID-19; DIAGNOSIS;
D O I
10.1007/s11042-022-12214-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The COVID-19 pandemic has affected all the countries in the world with its droplet spread mode. The colossal amount of cases has strained all the healthcare systems due to the serious nature of infections especially for people with comorbidities. A very high specificity Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) test is the principal technique in use for diagnosing the COVID-19 patients. Also, CT scans have helped medical professionals in patient severity estimation & progression tracking of COVID-19 virus. In study we present our own extensible COVID-19 viral infection tracking prognosis technique. It uses annotated dataset of CT chest scan slice images created with the help of medical professionals. The annotated dataset contains bounding box coordinates of different features for COVID-19 detection like ground glass opacities, crazy paving pattern, consolidations, lesions etc. We qualitatively identify the severity of the patient for later prognosis stages in our study to assist medical staff for patient prioritization. First we detected COVID-19 positive patients with pre-trained Siamese Neural Network (SNN) which obtained 87.6% accuracy, 87.1% F1-Score & 95.1% AUC scores. These metrics were achieved after removal of 40% quantitatively highly similar images from the COVID-CT dataset. This reduced dataset was further medically annotated with COVID-19 features for bounding box detection. After this we assigned severity scores to detected COVID-19 features and calculated the cumulative severity score for COVID-19 patients. For qualitative patient prioritization with prognosis clinical assistance information, we finally converted this score into a multi-classification problem which obtained 47% weighted-average F1-score.
引用
收藏
页码:18129 / 18153
页数:25
相关论文
共 50 条
  • [41] Detecting COVID-19 in chest images based on deep transfer learning and machine learning algorithms
    Rezaeijo, Seyed Masoud
    Ghorvei, Mohammadreza
    Abedi-Firouzjah, Razzagh
    Mojtahedi, Hesam
    Zarch, Hossein Entezari
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [42] A Deep Learning Approach to Detect COVID-19 Patients from Chest X-ray Images
    Haque, Khandaker Foysal
    Abdelgawad, Ahmed
    AI, 2020, 1 (03)
  • [43] Automated quantification of COVID-19 severity and progression using chest CT images
    Jiantao Pu
    Joseph K. Leader
    Andriy Bandos
    Shi Ke
    Jing Wang
    Junli Shi
    Pang Du
    Youmin Guo
    Sally E. Wenzel
    Carl R. Fuhrman
    David O. Wilson
    Frank C. Sciurba
    Chenwang Jin
    European Radiology, 2021, 31 : 436 - 446
  • [44] Automated quantification of COVID-19 severity and progression using chest CT images
    Pu, Jiantao
    Leader, Joseph K.
    Bandos, Andriy
    Ke, Shi
    Wang, Jing
    Shi, Junli
    Du, Pang
    Guo, Youmin
    Wenzel, Sally E.
    Fuhrman, Carl R.
    Wilson, David O.
    Sciurba, Frank C.
    Jin, Chenwang
    EUROPEAN RADIOLOGY, 2021, 31 (01) : 436 - 446
  • [45] Deep Learning-based Detection of COVID-19 from Chest X-ray Images
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [46] COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques
    Mathesul, Shubham
    Swain, Debabrata
    Satapathy, Santosh Kumar
    Rambhad, Ayush
    Acharya, Biswaranjan
    Gerogiannis, Vassilis C.
    Kanavos, Andreas
    ALGORITHMS, 2023, 16 (10)
  • [47] Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis
    Francone, Marco
    Iafrate, Franco
    Masci, Giorgio Maria
    Coco, Simona
    Cilia, Francesco
    Manganaro, Lucia
    Panebianco, Valeria
    Andreoli, Chiara
    Colaiacomo, Maria Chiara
    Zingaropoli, Maria Antonella
    Ciardi, Maria Rosa
    Mastroianni, Claudio Maria
    Pugliese, Francesco
    Alessandri, Francesco
    Turriziani, Ombretta
    Ricci, Paolo
    Catalano, Carlo
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6808 - 6817
  • [48] Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis
    Marco Francone
    Franco Iafrate
    Giorgio Maria Masci
    Simona Coco
    Francesco Cilia
    Lucia Manganaro
    Valeria Panebianco
    Chiara Andreoli
    Maria Chiara Colaiacomo
    Maria Antonella Zingaropoli
    Maria Rosa Ciardi
    Claudio Maria Mastroianni
    Francesco Pugliese
    Francesco Alessandri
    Ombretta Turriziani
    Paolo Ricci
    Carlo Catalano
    European Radiology, 2020, 30 : 6808 - 6817
  • [49] Prognosis patients with COVID-19 using deep learning
    José Luis Guadiana-Alvarez
    Fida Hussain
    Ruben Morales-Menendez
    Etna Rojas-Flores
    Arturo García-Zendejas
    Carlos A. Escobar
    Ricardo A. Ramírez-Mendoza
    Jianhong Wang
    BMC Medical Informatics and Decision Making, 22
  • [50] Prognosis patients with COVID-19 using deep learning
    Luis Guadiana-Alvarez, Jose
    Hussain, Fida
    Morales-Menendez, Ruben
    Rojas-Flores, Etna
    Garcia-Zendejas, Arturo
    Escobar, Carlos A.
    Ramirez-Mendoza, Ricardo A.
    Wang, Jianhong
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)