Comparison of Hospital Building's Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network

被引:15
|
作者
Panagiotou, Dimitrios K. [1 ]
Dounis, Anastasios, I [1 ]
机构
[1] Univ West Attica, Dept Biomed Engn, Athens 12243, Greece
关键词
artificial neural networks; adaptive neuro-fuzzy adaptive inference system; long short-term memory networks; backpropagation algorithms; metaheuristic algorithms; machine learning; load forecasting; OPTIMIZATION; ALGORITHM;
D O I
10.3390/en15176453
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU's "Green Deal", financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital's facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors' applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Prediction of Building Energy Consumption At Early Design Stage based on Artificial Neural Network
    Yao Jian
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 580 - 585
  • [12] Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis
    Li, Kangji
    Hu, Chenglei
    Liu, Guohai
    Xue, Wenping
    ENERGY AND BUILDINGS, 2015, 108 : 106 - 113
  • [13] ARTIFICIAL NEURAL NETWORK MODELS FOR BUILDING ENERGY PREDICTION
    Ahn, Ki Uhn
    Park, Cheol Soo
    2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 2708 - 2716
  • [14] Artificial Neural Network Optimization in Prediction Baseline Energy Consumption to Quantify Energy Savings in Commercial Building
    Adnan, Wan Nazirah Wan Md
    Dahlan, Nofri Yenita
    Musirin, Ismail
    2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 393 - 397
  • [15] Building energy consumption prediction and optimization using different neural network-assisted models; comparison of different networks and optimization algorithms
    Afzal, Sadegh
    Shokri, Afshar
    Ziapour, Behrooz M.
    Shakibi, Hamid
    Sobhani, Behnam
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [16] On-line building energy prediction using adaptive artificial neural networks
    Yang, J
    Rivard, H
    Zmeureanu, R
    ENERGY AND BUILDINGS, 2005, 37 (12) : 1250 - 1259
  • [17] A hybrid teaching-learning artificial neural network for building electrical energy consumption prediction
    Li, Kangji
    Xie, Xianming
    Xue, Wenping
    Dai, Xiaoli
    Chen, Xu
    Yang, Xinyun
    ENERGY AND BUILDINGS, 2018, 174 : 323 - 334
  • [18] Prediction of Building Energy Consumption Based on BP Neural Network
    Sun, Hailing
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [19] Prediction of residential building energy consumption: A neural network approach
    Biswas, M. A. Rafe
    Robinson, Melvin D.
    Fumo, Nelson
    ENERGY, 2016, 117 : 84 - 92
  • [20] Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks
    Kavaklioglu, Kadir
    Ceylan, Halim
    Ozturk, Harun Kemal
    Canyurt, Cay Ersel
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (11) : 2719 - 2727