Enriching Trajectories with Semantic Data for a Deeper Analysis of Patterns Extracted

被引:0
|
作者
Chakri, Sana [1 ]
Raghay, Said [1 ]
el Hadaj, Salah [1 ]
机构
[1] Cadi Ayyad Univ, LAMAI Lab, Dept Appl Math & Comp Sci, Marrakech, Morocco
关键词
Spatiotemporal data mining; Semantic enrichment process; Geographic information system; Semantic trajectory knowledge discovery; Extracting behavioral knowledge;
D O I
10.1007/978-3-319-52941-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geographical Information System (GIS) stores several types of data collected from several sources in varied format. Thus geo-databases generate day by day a huge volume of data from satellite images and mobile sensors like GPS, among these data we find in one hand spatial features and geographical data, and in other hand trajectories browsed by several moving objects in some period of time. Merging these types of data leads to produce semantic trajectory data. Enriching trajectories with semantic geographical information lead to facilitate queries, analysis, and mining of moving object data. Therefore applying mining techniques on semantic trajectories continue to proof a success stories in discovering useful and non-trivial behavioral patterns of moving objects. The objective of this paper is to envisage an overview of semantic trajectory knowledge discovery, and spatial data mining approaches for geographic information system. Based on analysis of various literatures, this paper proposes a concept of multi-layer system architecture for raw trajectory construction, trajectory enrichment, and semantic trajectory mining.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [1] Enriching Texture Analysis with Semantic Data
    Matthews, Tim
    Nixon, Mark S.
    Niranjan, Mahesan
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1248 - 1255
  • [2] From GPS to semantic data: how and why—a framework for enriching smartphone trajectories
    Ahmed Ibrahim
    Heng Zhang
    Sarah Clinch
    Simon Harper
    Computing, 2021, 103 : 2763 - 2787
  • [3] From GPS to semantic data: how and why-a framework for enriching smartphone trajectories
    Ibrahim, Ahmed
    Zhang, Heng
    Clinch, Sarah
    Harper, Simon
    COMPUTING, 2021, 103 (12) : 2763 - 2787
  • [4] CyclicShift: A Data Augmentation Method For Enriching Data Patterns
    Lu, Hui
    Cheng, Xuan
    Xia, Wentao
    Deng, Pan
    Liu, MingHui
    Xie, Tianshu
    Wang, XiaoMin
    Liu, Ming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4921 - 4929
  • [5] Semantic Trajectories Modeling and Analysis
    Parent, Christine
    Spaccapietra, Stefano
    Renso, Chiara
    Andrienko, Gennady
    Andrienko, Natalia
    Bogorny, Vania
    Damiani, Maria Luisa
    Gkoulalas-Divanis, Aris
    Macedo, Jose
    Pelekis, Nikos
    Theodoridis, Yannis
    Yan, Zhixian
    ACM COMPUTING SURVEYS, 2013, 45 (04)
  • [6] Enriching data warehouse dimension hierarchies by using semantic relations
    Mazon, Jose-Norberto
    Trujillo, Juan
    FLEXIBLE AND EFFICIENT INFORMATION HANDLING, 2006, 4042 : 278 - 281
  • [7] Deeper representation of digital information: From metadata to semantic data
    Qin, JA
    Liddy, E
    Smith, TR
    Zeng, ML
    ASIST 2002: PROCEEDINGS OF THE 65TH ASIST ANNUAL MEETING, VOL 39, 2002, 2002, 39 : 451 - 451
  • [8] Efficient Mining of Regional Movement Patterns in Semantic Trajectories
    Choi, Dong-Wan
    Pei, Jian
    Heinis, Thomas
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (13): : 2073 - 2084
  • [9] Design Patterns for Modelling Life Trajectories in the Semantic Web
    Noel, David
    Villanova-Oliver, Marlene
    Gensel, Jerome
    Le Queau, Pierre
    WEB AND WIRELESS GEOGRAPHICAL INFORMATION SYSTEMS, W2GIS 2017, 2017, 10181 : 51 - 65
  • [10] Towards deeper understanding of the latent semantic analysis performance
    Nakov, P
    Valchanova, E
    Angelova, G
    Recent Advances in Natural Language Processing III, 2004, 260 : 297 - 306