Semantic Trajectories Modeling and Analysis

被引:348
|
作者
Parent, Christine [1 ]
Spaccapietra, Stefano [2 ]
Renso, Chiara [3 ]
Andrienko, Gennady [4 ]
Andrienko, Natalia [4 ]
Bogorny, Vania [5 ]
Damiani, Maria Luisa [6 ]
Gkoulalas-Divanis, Aris [7 ]
Macedo, Jose [8 ]
Pelekis, Nikos [9 ]
Theodoridis, Yannis [10 ]
Yan, Zhixian [2 ]
机构
[1] Univ Lausanne, ISI, HEC, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, IC, LSIR, Stn 14, CH-1015 Lausanne, Switzerland
[3] CNR, ISTI, I-56010 Pisa, Italy
[4] Fraunhofer Inst IAIS, D-53754 St Augustin, Germany
[5] Univ Fed Santa Catarina, CTC, INE, BR-88040900 Florianopolis, SC, Brazil
[6] Univ Milan, I-20135 Milan, Italy
[7] IBM Res Ireland, Dublin 15, Ireland
[8] Dept Comp Sci, Fortaleza, Ceara, Brazil
[9] Univ Piraeus, Dept Stat & Insurance Sci, GR-18534 Piraeus, Greece
[10] Univ Piraeus, Dept Informat, GR-18534 Piraeus, Greece
关键词
Algorithms; Design; Legal Aspects; Management; Movement; mobility tracks; tracking; mobility data; trajectories; trajectory behavior; semantic enrichment; data mining; activity identification; GPS; MOVING-OBJECTS; PATTERNS; FRAMEWORK; MOVEMENT; PRIVACY; GPS;
D O I
10.1145/2501654.2501656
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Focus on movement data has increased as a consequence of the larger availability of such data due to current GPS, GSM, RFID, and sensors techniques. In parallel, interest in movement has shifted from raw movement data analysis to more application-oriented ways of analyzing segments of movement suitable for the specific purposes of the application. This trend has promoted semantically rich trajectories, rather than raw movement, as the core object of interest in mobility studies. This survey provides the definitions of the basic concepts about mobility data, an analysis of the issues in mobility datamanagement, and a survey of the approaches and techniques for: (i) constructing trajectories from movement tracks, (ii) enriching trajectories with semantic information to enable the desired interpretations of movements, and (iii) using data mining to analyze semantic trajectories and extract knowledge about their characteristics, in particular the behavioral patterns of the moving objects. Last but not least, the article surveys the new privacy issues that arise due to the semantic aspects of trajectories.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Semantic Modeling and Reconstruction of Drones' Trajectories
    Soularidis, Andreas
    Kotis, Konstantinos
    SEMANTIC WEB: ESWC 2022 SATELLITE EVENTS, 2022, 13384 : 158 - 162
  • [2] Semantic Trajectories: A Survey from Modeling to Application
    Albanna, Basma H.
    Moawad, Ibrahim F.
    Moussa, Sherin M.
    Sakr, Mahmoud A.
    INFORMATION FUSION AND GEOGRAPHIC INFORMATION SYSTEMS (IF&GIS' 2015): DEEP VIRTUALIZATION FOR MOBILE GIS, 2015, : 59 - 76
  • [3] A Semantic Approach for the Modeling of Trajectories in Space and Time
    Zheni, Donia
    Frihida, Ali
    Ben Ghezala, Henda
    Claramunt, Christophe
    ADVANCES IN CONCEPTUAL MODELING - CHALLENGES PERSPECTIVES, 2009, 5833 : 347 - +
  • [4] Multiple-aspect analysis of semantic trajectories(MASTER)
    Renso, Chiara
    Bogorny, Vania
    Tserpes, Konstantinos
    Matwin, Stan
    de Macedo, Jose Antonio Fernandes
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (04) : 763 - 766
  • [5] Mining semantic trajectories
    Gomez, Leticia
    Vaisman, Alejandro A.
    INTELLIGENT DATA ANALYSIS, 2013, 17 (05) : 857 - 898
  • [6] Semantic Trajectories and Beyond
    Damiani, Maria Luisa
    Gueting, Ralf Hartmut
    2014 IEEE 15TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (IEEE MDM), VOL 2, 2014, : 1 - 3
  • [7] Modeling semantic business trajectories of territories for multidisciplinary studies through controlled vocabularies
    Arslan, Muhammad
    Cruz, Christophe
    2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 170 - 177
  • [8] A Convolutional Neural Network Approach for Modeling Semantic Trajectories and Predicting Future Locations
    Karatzoglou, Antonios
    Schnell, Nikolai
    Beigl, Michael
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 61 - 72
  • [9] User Guided Movement Analysis in Games using Semantic Trajectories
    Schertler, Ruben
    Kriglstein, Simone
    Wallner, Gunter
    CHI PLAY'19: PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY, 2019, : 613 - 623
  • [10] Enriching Trajectories with Semantic Data for a Deeper Analysis of Patterns Extracted
    Chakri, Sana
    Raghay, Said
    el Hadaj, Salah
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS 2016), 2017, 552 : 209 - 218