共 50 条
High-glucose-induced prostaglandin E2 and peroxisome proliferator-activated receptor δ promote mouse embryonic stem cell proliferation
被引:39
|作者:
Kim, Yun Hee
[1
]
Han, Ho Jae
[1
]
机构:
[1] Chonnam Natl Univ, Coll Vet Med, Dept Vet Physiol, Biotherapy Human Resources Ctr, Kwangju 500757, South Korea
来源:
关键词:
high glucose;
embryonic stem cells;
peroxisome proliferator-activated receptor delta;
prostaglandin E-2;
D O I:
10.1634/stemcells.2007-0786
中图分类号:
Q813 [细胞工程];
学科分类号:
摘要:
Peroxisome proliferator-activated receptor is a nuclear receptor that has been implicated in blastocyst implantation, cell cycle, and pathogenesis of diabetes. However, the signal cascades underlying this effect are largely unknown in embryo stem cells. This study examined whether or not there is an association between the reactive oxygen species-mediated prostaglandin E-2 (PGE(2))/peroxisome proliferator-activated receptor (PPAR) delta and the growth response to high glucose levels in mouse ESCs. A high concentration of glucose (25 mM) significantly increased the level of [H-3] thymidine incorporation, the level of 5-bromo-2'-deoxyuridine incorporation, and the number of cells. Moreover, 25 mM glucose increased the intracellular reactive oxygen species, phosphorylation of the cytosolic phospholipase A(2) (cPLA(2)), and the release of [H-3] arachidonic acid ([H-3] AA). In addition, 25 mM glucose also increased the level of cyclooxygenase-2 (COX-2) protein expression, which stimulated the synthesis of PGE(2). Subsequently, high glucose-induced PGE(2) stimulated PPAR delta expression directly or through Akt phosphorylation indirectly through the E type prostaglandin receptor receptors. The PPAR delta antagonist inhibited the 25 mM glucose-induced DNA synthesis. Moreover, transfection with a pool of PPAR delta-specific small interfering RNA inhibited the 25 mM glucose-induced DNA synthesis and G1/S phase progression. Twenty-five millimolar glucose also increased the level of the cell cycle regulatory proteins (cyclin E/cyclin-dependent kinase [CDK] 2 and cyclin D1/CDK 4) and decreased p21(WAF1/Cip1) and p27(Kip1), which were blocked by the inhibition of the cPLA(2), COX-2, or PPAR delta pathways. In conclusion, high glucose promotes mouse ESC growth in part through the cPLA(2)-mediated PGE(2) synthesis and in part through PPAR delta pathways.
引用
收藏
页码:745 / 755
页数:11
相关论文