A 3D finite element formulation describing the frictional behavior of rubber on ice and concrete surfaces

被引:27
|
作者
Huemer, T [1 ]
Liu, WN [1 ]
Eberhardsteiner, J [1 ]
Mang, HA [1 ]
机构
[1] Vienna Univ Technol, Inst Strength Mat, Vienna, Austria
关键词
friction; rubber; concrete; finite element method;
D O I
10.1108/02644400110387109
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The frictional behavior of rubber Materials on various contact surfaces is strongly affected by the contact pressure and the relative sliding velocity as well as the environmental temperature Based on a great number of experiments of rubber blocks moving on concrete and ice surfaces, a friction law for 3D contact analyses is presented in this paper It is characterized by the dependency on the contact pressure, sliding; velocity and the environmental temperature. The identification and correction of the parameters of this friction law were done by means of a least-square method followed by re-analyses of the respective experiments. Several examples are given in a numerical investigation of the frictional behavior of rubber materials.
引用
收藏
页码:417 / 436
页数:20
相关论文
共 50 条
  • [31] Linear complementarity formulation for 3D frictional sliding problems
    J. Ole Kaven
    Stephen H. Hickman
    Nicholas C. Davatzes
    Ovunc Mutlu
    Computational Geosciences, 2012, 16 : 613 - 624
  • [32] Gediminas Hill Slopes Behavior in 3D Finite Element Model
    Skuodis, Sarunas
    Daugevicius, Mykolas
    Medzvieckas, Jurgis
    Sneideris, Arnoldas
    Jokubaitis, Aidas
    Rastenis, Justinas
    Valivonis, Juozas
    BUILDINGS, 2022, 12 (08)
  • [33] EFFICIENT 3D FINITE-ELEMENT ANALYSIS OF RUBBER-LIKE MATERIALS
    LIU, CH
    HOFSTETTER, G
    MANG, HA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T906 - T908
  • [34] A 3D FDTD-subgridding scheme derived from a finite element formulation
    Bonilla, M
    Alquié, G
    Hanna, VF
    Wong, MF
    Wiart, J
    ELECTROMAGNETICS, 2002, 22 (05) : 429 - 442
  • [35] A low order 3D virtual element formulation for finite elasto–plastic deformations
    Blaž Hudobivnik
    Fadi Aldakheel
    Peter Wriggers
    Computational Mechanics, 2019, 63 : 253 - 269
  • [36] An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
    Ramirez, J. M.
    Gatti, C. D.
    Machado, S. P.
    Febbo, M.
    ENGINEERING STRUCTURES, 2017, 153 : 136 - 145
  • [37] Geometrically nonlinear formulation of 3D finite strain beam element with large rotations
    Lo, S.H.
    Computers and Structures, 1992, 44 (1-2): : 147 - 157
  • [38] 3D zero-thickness coupled interface finite element: Formulation and application
    Cerfontaine, B.
    Dieudonne, A. C.
    Radu, J. P.
    Collin, F.
    Charlier, R.
    COMPUTERS AND GEOTECHNICS, 2015, 69 : 124 - 140
  • [39] A mixed face-edge finite element formulation for 3D magnetostatic problems
    Alotto, P
    Delfino, F
    Molfino, P
    Nervi, M
    Perugia, I
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2445 - 2448
  • [40] GEOMETRICALLY NONLINEAR FORMULATION OF 3D FINITE STRAIN BEAM ELEMENT WITH LARGE ROTATIONS
    LO, SH
    COMPUTERS & STRUCTURES, 1992, 44 (1-2) : 147 - 157