Liouville type theorem for transversally harmonic maps

被引:2
|
作者
Fu, Xueshan [1 ]
Jung, Seoung Dal [1 ]
机构
[1] Jeju Natl Univ, Dept Math, Jeju 63243, South Korea
关键词
Transversal tension field; transversally harmonic map; Liouville type theorem; MANIFOLDS;
D O I
10.1007/s00022-021-00617-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a complete foliated Riemannian manifold and all leaves be compact. Let (M', F') be a foliated Riemannian manifold of non-positive transversal sectional curvature. Assume that the transversal Ricci curvature Ric(Q) of M satisfies Ric(Q) >= -lambda(0) at all point x is an element of M and Ric(Q) > -lambda(0) at some point x(0), where lambda(0) is the infimum of the spectrum of the basic Laplacian acting on L-2-basic functions on M. Then every transversally harmonic map phi: M -> M' of finite transversal energy is transversally constant.
引用
收藏
页数:9
相关论文
共 50 条