Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region

被引:15
|
作者
Komisarenko, Viacheslav [1 ]
Voormansik, Kaupo [2 ,3 ]
Elshawi, Radwa [1 ]
Sakr, Sherif [1 ]
机构
[1] Univ Tartu, Inst Comp Sci, Tartu, Estonia
[2] Univ Tartu, Tartu Observ, Tartu, Estonia
[3] KappaZeta Ltd, Tartu, Estonia
关键词
RADAR BACKSCATTER; TERRASAR-X; COVER; ABANDONMENT; SCATTERING; IMPACTS; MODELS; FOREST; NDVI;
D O I
10.1038/s41598-022-04932-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Governments pay agencies to control the activities of farmers who receive governmental support. Field visits are costly and highly time-consuming; hence remote sensing is widely used for monitoring farmers' activities. Nowadays, a vast amount of available data from the Sentinel mission significantly boosted research in agriculture. Estonia is among the first countries to take advantage of this data source to automate mowing and ploughing events detection across the country. Although techniques that rely on optical data for monitoring agriculture events are favourable, the availability of such data during the growing season is limited. Thus, alternative data sources have to be evaluated. In this paper, we developed a deep learning model with an integrated reject option for detecting grassland mowing events using time series of Sentinel-1 and Sentinel-2 optical images acquired from 2000 fields in Estonia in 2018 during the vegetative season. The rejection mechanism is based on a threshold over the prediction confidence of the proposed model. The proposed model significantly outperforms the state-of-the-art technique and achieves event accuracy of 73.3% and end of season accuracy of 94.8%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region
    Viacheslav Komisarenko
    Kaupo Voormansik
    Radwa Elshawi
    Sherif Sakr
    [J]. Scientific Reports, 12
  • [2] Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series
    Reinermann, Sophie
    Gessner, Ursula
    Asam, Sarah
    Ullmann, Tobias
    Schucknecht, Anne
    Kuenzer, Claudia
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [3] Mowing detection using Sentinel-1 and Sentinel-2 time series for large scale grassland monitoring
    De Vroey, Mathilde
    de Vendictis, Laura
    Zavagli, Massimo
    Bontemps, Sophie
    Heymans, Diane
    Radoux, Julien
    Koetz, Benjamin
    Defourny, Pierre
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [4] Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions
    Stendardi, Laura
    Karlsen, Stein Rune
    Niedrist, Georg
    Gerdol, Renato
    Zebisch, Marc
    Rossi, Mattia
    Notarnicola, Claudia
    [J]. REMOTE SENSING, 2019, 11 (05)
  • [5] Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations
    De Vroey, Mathilde
    Radoux, Julien
    Defourny, Pierre
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 19
  • [6] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [7] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [8] Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series
    Kolecka, Natalia
    Ginzler, Christian
    Pazur, Robert
    Price, Bronwyn
    Verburg, Peter H.
    [J]. REMOTE SENSING, 2018, 10 (08):
  • [9] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [10] Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    [J]. REMOTE SENSING, 2024, 16 (03)