A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta

被引:54
|
作者
Donninger, Roland [1 ]
Schlag, Wilhelm [1 ]
Soffer, Avy [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Dispersive estimates for wave equation; Spectral and scattering theory; Schwarzschild black hole; RELATIVISTIC GRAVITATIONAL COLLAPSE; SEMILINEAR WAVE-EQUATION; NONSPHERICAL PERTURBATIONS; SCHRODINGER EVOLUTIONS; KERR GEOMETRY; CONICAL ENDS; DECAY; STABILITY; SCALAR; SPACE;
D O I
10.1016/j.aim.2010.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Price's Law states that linear perturbations of a Schwarzschild black hole fall off as t(-2l-3) for t -> infinity provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially static (i.e., their time derivative is zero), then the decay is predicted to be t(-2l-4). We give a proof of t(-2l-2) decay for general data in the form of weighted L-1 to L-infinity bounds for solutions of the Regge-Wheeler equation. For initially static perturbations we obtain t(-2l-3). The proof is based on an integral representation of the solution which follows from self-adjoint spectral theory. We apply two different perturbative arguments in order to construct the corresponding spectral measure and the decay bounds are obtained by appropriate oscillatory integral estimates. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 540
页数:57
相关论文
共 50 条
  • [31] On some solutions of Maxwell's equations in a Schwarzschild-de Sitter black hole
    Bessa, Carlos H. G.
    Bezerra, V. B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)
  • [32] The Schwarzschild black hole’s remnant via the Bohr-Sommerfeld quantization rule
    Deyou Chen
    Xiaoxiong Zeng
    General Relativity and Gravitation, 2013, 45 : 631 - 641
  • [33] Scalar bosons with gravitational effects near Schwarzschild's black hole: The Rindler recipe
    Targema, Terkaa Victor
    Oyewumi, Kayode John
    Ajulo, Kayode Richard
    Joseph, Gabriel Wirdzelii
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (14)
  • [34] Noncommutativity's impact on the local stability of the accelerating (un)charged Schwarzschild black hole
    Chacha, M.
    Lekbich, H.
    Mansour, N.
    El Boukili, A.
    Benami, A.
    Ouadoudi, N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2025, 40 (05):
  • [35] Freely failing particles in a Schwarzschild black hole. Notes on Zerilli's approach
    Cruciani, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2005, 120 (10-11): : 1045 - 1053
  • [36] ENERGY, MOMENTUM AND ANGULAR-MOMENTUM OF GRAVITATIONAL-WAVES INDUCED BY A PARTICLE PLUNGING INTO A SCHWARZSCHILD BLACK-HOLE
    OOHARA, K
    NAKAMURA, T
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (03): : 757 - 771
  • [37] Black hole/string transition for the small Schwarzschild black hole of AdS5× S5 and critical unitary matrix models
    L. Álvarez-Gaumé
    P. Basu
    M. Mariño
    S.R. Wadia
    The European Physical Journal C - Particles and Fields, 2006, 48 : 647 - 665
  • [38] Constraining a disformal Schwarzschild black hole in DHOST theories with the orbit of the S2 star
    Zhang, Zelin
    Chen, Songbai
    Jing, Jiliang
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (08):
  • [39] A proof of Price's law for the collapse of a self-gravitating scalar field
    Dafermos, M
    Rodnianski, I
    INVENTIONES MATHEMATICAE, 2005, 162 (02) : 381 - 457
  • [40] A proof of Price’s law for the collapse of a self-gravitating scalar field
    Mihalis Dafermos
    Igor Rodnianski
    Inventiones mathematicae, 2005, 162 : 381 - 457