Regression with input-dependent noise: A Gaussian process treatment

被引:0
|
作者
Goldberg, PW [1 ]
Williams, CKI [1 ]
Bishop, CM [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
关键词
D O I
暂无
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
引用
收藏
页码:493 / 499
页数:7
相关论文
共 50 条
  • [21] Intriguing Properties of Input-Dependent Randomized Smoothing
    Sukenik, Peter
    Kuvshinov, Aleksei
    Guennemann, Stephan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [22] Input-Dependent Structural Identifiability of Nonlinear Systems
    Villaverde, Alejandro F.
    Evans, Neil D.
    Chappell, Michael J.
    Banga, Julio R.
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (02): : 272 - 277
  • [23] CODING FOR NOISY CHANNELS WITH INPUT-DEPENDENT INSERTIONS
    ZISKIND, I
    BERGER, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (05) : 598 - 604
  • [24] Dynamic Reconfiguration of CNNs for Input-Dependent Approximation
    Hemmat, Maedeh
    Davoodi, Azadeh
    PROCEEDINGS OF THE 2019 20TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2019, : 176 - 182
  • [25] Modeling Input-Dependent Error Propagation in Programs
    Li, Guanpeng
    Pattabiraman, Karthik
    2018 48TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2018, : 279 - 290
  • [26] INCREMENTAL SPARSE PSEUDO-INPUT GAUSSIAN PROCESS REGRESSION
    Suk, Heung-Il
    Wang, Yuzhuo
    Lee, Seong-Whan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (08)
  • [27] Compensation of input-dependent hydraulic input delay for a model of a microfluidic process under Zweifach-Fung effect
    Bekiaris-Liberis, Nikolaos
    Bresch-Pietri, Delphine
    Petit, Nicolas
    AUTOMATICA, 2024, 160
  • [28] Sparse Gaussian Process With Input Noise for Human Pose Estimation
    Xia J.-X.
    Chen X.
    Lin J.-X.
    Li W.-P.
    Wu Q.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (04): : 693 - 705
  • [29] Input-dependent stability analysis of systems with saturation in feedback
    Pogromsky, A. Yu.
    Matveev, A. S.
    Chaillet, A.
    Rueffer, B.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 5903 - 5908
  • [30] OPTIMAL LINEAR OUTPUT REGULATOR WITH INPUT-DEPENDENT MEASUREMENTS
    TYLEE, JL
    MECHANICAL ENGINEERING, 1984, 106 (02) : 90 - 90