A stabilized finite volume method for the stationary Navier-Stokes equations

被引:14
|
作者
Sheng, Ying [1 ]
Zhang, Tie [1 ]
Jiang, Zhong-Zhong [2 ,3 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Math, Shenyang 110004, Peoples R China
[2] Northeastern Univ, Sch Business Adm, Dept Informat Management & Decis Sci, Shenyang 110169, Peoples R China
[3] Northeastern Univ, Sch Business Adm, Inst Behav & Serv Operat Management, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite volume method; Navier-Stokes problem; Stabilized method; P-1-P-0 element pair; Inf-sup condition; ELEMENT-METHOD; SUPERCONVERGENCE; APPROXIMATION; FORMULATION; PROJECTION;
D O I
10.1016/j.chaos.2016.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we propose a stabilized finite volume element method for the Navier-Stokes equations using the lowest order P-1-P-0 element pair. The stabilized method is designed by adding a jump term of the discrete pressure to the continuity approximation equation. A discrete inf-sup condition is established for the stabilized finite volume element scheme which assures the stability of the discrete solutions. The optimal error estimates are derived in the H-1-norm for velocity and the L-2-norm for pressure, respectively. Moreover, the optimal L-2- error estimate is also given for velocity approximation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 50 条
  • [21] A penalty finite volume method for the transient Navier-Stokes equations
    He, Guoliang
    He, Yinnian
    Chen, Zhangxin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (11) : 1583 - 1613
  • [22] A new stabilized finite volume method for the stationary Stokes equations
    Jian Li
    Zhangxin Chen
    [J]. Advances in Computational Mathematics, 2009, 30 : 141 - 152
  • [23] A new stabilized finite volume method for the stationary Stokes equations
    Li, Jian
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 30 (02) : 141 - 152
  • [24] Characteristic stabilized finite element method for the transient Navier-Stokes equations
    Jia, Hongen
    Li, Kaitai
    Liu, Songhua
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (45-48) : 2996 - 3004
  • [25] A new stabilized finite element method for the transient Navier-Stokes equations
    Li, Jian
    He, Yinnian
    Chen, Zhangxin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 22 - 35
  • [26] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [27] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [28] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [29] A stabilized finite element method for stochastic incompressible Navier-Stokes equations
    El-Amrani, Mofdi
    Seaid, Mohammed
    Zahri, Mostafa
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2576 - 2602
  • [30] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174