Quinoline and Quinazoline Derivatives Inhibit Viral RNA Synthesis by SARS-CoV-2 RdRp

被引:36
|
作者
Zhao, Jianyuan [1 ]
Zhang, Yongxin [1 ]
Wang, Minghua [1 ]
Liu, Qian [1 ]
Lei, Xiaobo [2 ]
Wu, Meng [3 ]
Guo, SaiSai [1 ]
Yi, Dongrong [1 ]
Li, Quanjie [1 ]
Ma, Ling [1 ]
Liu, Zhenlong [4 ,5 ]
Guo, Fei [2 ]
Wang, Jianwei [2 ]
Li, Xiaoyu [1 ]
Wang, Yucheng [1 ]
Cen, Shan [1 ]
机构
[1] Chinese Acad Med Sci, Inst Med Biotechnol, Beijing 100050, Peoples R China
[2] Chinese Acad Med Sci, Inst Pathogen Biol, Beijing 100730, Peoples R China
[3] Beijing Hosp, Dept Urol, Beijing 100730, Peoples R China
[4] Jewish Gen Hosp, Lady Davis Inst Med Res, Montreal, PQ H3T 1E2, Canada
[5] Jewish Gen Hosp, McGill AIDS Ctr, Montreal, PQ H3T 1E2, Canada
来源
ACS INFECTIOUS DISEASES | 2021年 / 7卷 / 06期
关键词
COVID-19; SARS-CoV-2; Quinoline and quinazoline derivatives; RdRp inhibitors; BIOACTIVITY;
D O I
10.1021/acsinfecdis.1c00083
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Coronavirus disease 2019 (COVID-19) is a fatal respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of potential drugs is urgently needed to control the pandemic. RNA dependent RNA polymerase (RdRp) is a conserved protein within RNA viruses and plays a crucial role in the viral life cycle, thus making it an attractive target for development of antiviral drugs. In this study, 101 quinoline and quinazoline derivatives were screened against SARS-CoV-2 RdRp using a cell-based assay. Three compounds I-13e, I-13h, and I-13i exhibit remarkable potency in inhibiting RNA synthesis driven by SARS-CoV-2 RdRp and relatively low cytotoxicity. Among these three compounds, I-13e showed the strongest inhibition upon RNA synthesis driven by SARS-CoV-2 RdRp, the resistance to viral exoribonuclease activity and the inhibitory effect on the replication of CoV, thus holding potential of being drug candidate for treatment of SARS-CoV-2.
引用
收藏
页码:1535 / 1544
页数:10
相关论文
共 50 条
  • [31] Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry
    Xu, Chuan
    Wang, Annie
    Marin, Mariana
    Honnen, William
    Ramasamy, Santhamani
    Porter, Edith
    Subbian, Selvakumar
    Pinter, Abraham
    Melikyan, Gregory B.
    Lu, Wuyuan
    Chang, Theresa L.
    VIRUSES-BASEL, 2021, 13 (07):
  • [32] Interfering viral-like particles inhibit SARS-CoV-2 replication
    Villanueva, M. Teresa
    NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (01) : 19 - 19
  • [33] Interfering viral-like particles inhibit SARS-CoV-2 replication
    M. Teresa Villanueva
    Nature Reviews Drug Discovery, 2022, 21 : 19 - 19
  • [34] Viral and Host Small RNA Response to SARS-CoV-2 Infection
    Sun, Guihua
    Cui, Qi
    Garcia Jr, Gustavo
    Lizhar, Elizabeth M.
    Arumugaswami, Vaithilingaraja
    Shi, Yanhong
    Riggs, Arthur D.
    MICROBIOLOGY RESEARCH, 2022, 13 (04) : 788 - 808
  • [35] SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis
    Saisai Guo
    Xiaobo Lei
    Yan Chang
    Jianyuan Zhao
    Jing Wang
    Xiaojing Dong
    Qian Liu
    Zixiong Zhang
    Lidan Wang
    Dongrong Yi
    Ling Ma
    Quanjie Li
    Yongxin Zhang
    Jiwei Ding
    Chen Liang
    Xiaoyu Li
    Fei Guo
    Jianwei Wang
    Shan Cen
    Signal Transduction and Targeted Therapy, 7
  • [36] SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis
    Guo, Saisai
    Lei, Xiaobo
    Chang, Yan
    Zhao, Jianyuan
    Wang, Jing
    Dong, Xiaojing
    Liu, Qian
    Zhang, Zixiong
    Wang, Lidan
    Yi, Dongrong
    Ma, Ling
    Li, Quanjie
    Zhang, Yongxin
    Ding, Jiwei
    Liang, Chen
    Li, Xiaoyu
    Guo, Fei
    Wang, Jianwei
    Cen, Shan
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [37] Prolonged presence of SARS-CoV-2 viral RNA in faecal samples
    Wu, Yongjian
    Guo, Cheng
    Tang, Lantian
    Hong, Zhongsi
    Zhou, Jianhui
    Dong, Xin
    Yin, Huan
    Xiao, Qiang
    Tang, Yanping
    Qu, Xiujuan
    Kuang, Liangjian
    Fang, Xiaomin
    Mishra, Nischay
    Lu, Jiahai
    Shan, Hong
    Jiang, Guanmin
    Huang, Xi
    LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (05): : 434 - 435
  • [38] Sangivamycin is preferentially incorporated into viral RNA by the SARS-CoV-2 polymerase
    Bennett, Ryan P.
    Yoluc, Yasemin
    Salter, Jason D.
    Ripp, Alexander
    Jessen, Henning J.
    Kaiser, Stefanie M.
    Smith, Harold C.
    ANTIVIRAL RESEARCH, 2023, 218
  • [39] Clinical associations of SARS-CoV-2 viral load using the first WHO International Standard for SARS-CoV-2 RNA
    Boan, Peter
    Jardine, Andrew
    Pryce, Todd M.
    PATHOLOGY, 2022, 54 (03) : 344 - 350
  • [40] Profiling Selective Packaging of Host RNA and Viral RNA Modification in SARS-CoV-2 Viral Preparations
    Pena, Noah
    Zhang, Wen
    Watkins, Christopher
    Halucha, Mateusz
    Alshammary, Hala
    Hernandez, Matthew M.
    Liu, Wen-Chun
    Albrecht, Randy A.
    Garcia-Sastre, Adolfo
    Simon, Viviana
    Katanski, Christopher
    Pan, Tao
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10