Exploring the Mechanism of Aspirin in the Treatment of Kawasaki Disease Based on Molecular Docking and Molecular Dynamics

被引:2
|
作者
Xiong, Li [1 ]
Cao, Junfeng [1 ]
Qiu, Yixin [1 ]
Fu, Yinyin [1 ]
Chen, Siyi [1 ]
He, Mengjia [1 ]
Chen, Shengyan [1 ]
Xie, Wei [1 ]
Yang, Xingyu [1 ]
Wang, Chaochao [1 ]
Wu, Mei [1 ]
Xu, Hengxiang [1 ]
Chen, Yijun [1 ]
Zhang, Xiao [2 ]
机构
[1] Chengdu Med Coll, Clin Med, Chengdu, Peoples R China
[2] Chengdu Med Coll, Ctr Expt Technol Preclin Med, Chengdu, Peoples R China
关键词
ANTIINFLAMMATORY DRUGS; CATHEPSIN-G; EPIDEMIOLOGY; MANAGEMENT; CYTOKINES; DIAGNOSIS; THERAPY; UPDATE;
D O I
10.1155/2022/9828518
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Purpose. The research aims to investigate the mechanism of action of aspirin in the treatment of Kawasaki disease. Methods. We predicted the targets of aspirin with the help of the Drugbank and PharmMapper databases, the target genes of Kawasaki disease were mined in the GeneCards and Disgenet databases, the intersection targets were processed in the Venny database, and the gene expression differences were observed in the GEO database. The Drugbank and PharmMapper databases were used to predict the target of aspirin, and the target genes of Kawasaki disease were explored in the GeneCards and Disgenet databases, and the Venny was used for intersection processing. We observed the gene expression differences in the GEO database. The disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the binding free energy, the number of hydrogen bonds, the stability of the protein target at the residue level, the radius of gyration, and the solvent accessible surface area. Results. Aspirin had 294 gene targets, Kawasaki disease had 416 gene targets, 42 intersecting targets were obtained, we screened 13 core targets by PPI; In the GO analysis, we learned that the biological process of Kawasaki disease involved the positive regulation of chemokine biosynthesis and inflammatory response; pathway enrichment involved PI3K-AKT signaling pathway, tumor necrosis factor signaling pathway, etc. After molecular docking, the data showed that CTSG, ELANE, and FGF1 had the best binding degree to aspirin. Molecular dynamics was used to prove and analyze the binding stability of active ingredients and protein targets, and Aspirin/ELANE combination has the strongest binding energy. Conclusion. In the treatment of Kawasaki disease, aspirin may regulate inflammatory response and vascular remodeling through CTSG, ELANE, and FGF1.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Exploring the Mechanism of White Peony in the Treatment of Lupus Nephritis Based on Network Pharmacology and Molecular Docking
    Cao, Yao
    Wang, Chaoban
    Dong, Liqun
    ARCHIVOS ESPANOLES DE UROLOGIA, 2023, 76 (02): : 123 - 131
  • [22] Exploring Mechanism of Pelargonidin in Treatment of Pediatric Pneumonia Based on Network Pharmacology Combined with Molecular Docking
    Wu, Yanli
    Ling, Yinfei
    Hong, Huijuan
    Chen, Yun
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024, 20 (07)
  • [23] Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking
    Han, Yong-Guang
    Lv, Xing
    Tan, Ya-Lan
    Ding, Yun-Shan
    Zhang, Chao-Yun
    Bian, Hua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024,
  • [24] Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study
    Wang, Zhigang
    Fang, Longzhi
    Han, Meng
    Liu, Kangzhe
    Zheng, Yuanmei
    Zhan, Yibei
    MEDICINE, 2024, 103 (51)
  • [25] Exploring the mechanism of Xiaoqinglong decoction in the treatment of infantile asthma based on network pharmacology and molecular docking
    Chen, Daman
    Chen, Qiqi
    Zhao, Kaibo
    Guo, Yongqi
    Huang, Yuxin
    Yuan, Zehuan
    Cai, Yujia
    Li, Sitong
    Xu, Jiarong
    Lin, Xiaohong
    MEDICINE, 2023, 102 (02) : E32623
  • [26] Exploring the mechanism of action of Phyllanthus emblica in the treatment of epilepsy based on network pharmacology and molecular docking
    Xiao, Longfei
    Chen, Wenjun
    Guo, Wenlong
    Li, Hailin
    Chen, Rong
    Chen, Qinghua
    MEDICINE, 2025, 104 (07)
  • [27] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Jie Su
    Mengmeng Huo
    Fengnan Xu
    Liqiong Ding
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397 : 1551 - 1559
  • [28] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Su, Jie
    Huo, Mengmeng
    Xu, Fengnan
    Ding, Liqiong
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (03) : 1551 - 1559
  • [29] Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation
    Yanling Li
    Ziliang Li
    Tongsheng Ye
    Fuqi Hao
    Yichi Wang
    Wenqian Li
    Qingfeng Yan
    Huawei Shi
    Weijuan Han
    Journal of Molecular Modeling, 2023, 29
  • [30] Exploring the Mechanism of Curcumin on Retinoblastoma Based on Network Pharmacology and Molecular Docking
    Wu, Chengfu
    Zheng, Wenli
    Zhang, Jifa
    He, Xingping
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022