Wavelets and statistical analysis of functional magnetic resonance images of the human brain

被引:95
|
作者
Bullmore, ET
Fadili, J
Breakspear, M
Salvador, R
Suckling, J
Brammer, M
机构
[1] Kings Coll London, Inst Psychiat, Dept Biostat & Comp, London SE5 8AF, England
[2] Univ Cambridge, Addenbrookes Hosp, Brain Mapping Unit, Cambridge CB2 2QQ, England
[3] Univ Cambridge, Addenbrookes Hosp, Wolfson Brain Imaging Ctr, Cambridge CB2 2QQ, England
[4] GREYC CNRS, UMR 6072, Caen, France
[5] Univ Sydney, Westmead Hosp, Brain Dynam Ctr, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
关键词
D O I
10.1191/0962280203sm339ra
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or 'whitening' of nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain imaging data, which often have fractal or scale-invariant properties. We briefly define some key properties of the discrete wavelet transform (DWT) and review its applications to statistical analysis of functional magnetic resonance imaging (fMRI) data. We focus on time series resampling by 'wavestrapping' of wavelet coefficients, methods for efficient linear model estimation in the wavelet domain, and wavelet-based methods for multiple hypothesis testing, all of which are somewhat simplified by the decorrelating property of the DWT.
引用
收藏
页码:375 / 399
页数:25
相关论文
共 50 条
  • [41] Statistical atlas of acute stroke from magnetic resonance diffusion-weighted-images of the brain
    Michel Bilello
    Zhiqiang Lao
    Jaroslaw Krejza
    Argye E. Hillis
    Edward H. Herskovits
    Neuroinformatics, 2006, 4 : 235 - 242
  • [42] Statistical shape analysis of brain structures using spherical wavelets
    Nain, D.
    Stynen, M.
    Niethammer, M.
    Levitt, J. J.
    Shenton, M. E.
    Gerig, G.
    Bobick, A.
    Tannenbaum, A.
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 209 - +
  • [43] Functional evaluation using multistep registration with standard magnetic resonance and ADAM brain images
    Huang, Chung-I
    Sun, Yung-Nien
    Yao, Wei-Jen
    NUCLEAR MEDICINE COMMUNICATIONS, 2011, 32 (07) : 635 - 640
  • [44] Methods of Brain Extraction from Magnetic Resonance Images of Human Head: A Review
    Praveenkumar S.
    Kalaiselvi T.
    Somasundaram K.
    Critical Reviews in Biomedical Engineering, 2023, 51 (04) : 1 - 40
  • [45] On the reconstruction of magnetic resonance current density images of the human brain: Pitfalls and perspectives
    Eroglu, Hasan H.
    Puonti, Oula
    Goeksu, Cihan
    Gregersen, Frodi
    Siebner, Hartwig R.
    Hanson, Lars G.
    Thielscher, Axel
    NEUROIMAGE, 2021, 243
  • [46] A robust method for segmentation of human brain tissue from magnetic resonance images
    Lin, Pan
    Zheng, Chong-Xun
    Yang, Yong
    Yan, Xiang-Guo
    Gu, Jian-Wen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2005, 27 (09): : 1420 - 1424
  • [47] Nonlinear denoising of functional magnetic resonance imaging time series with wavelets
    Stausberg, Sven
    Lehnertz, Klaus
    PHYSICAL REVIEW E, 2009, 79 (04)
  • [48] Calibration method of functional magnetic resonance images
    Lee, HJ
    Turner, J
    Potkin, SG
    CISST '05: Proceedings of the 2005 International Conference on Imaging Science, Systems, and Technology: Computer Graphics, 2005, : 13 - 19
  • [49] Preprocessing and segmentation of brain magnetic resonance images
    Shen, S
    Sandham, WA
    Granat, AH
    ITAB 2003: 4TH INTERNATIONAL IEEE EMBS SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY APPLICATIONS IN BIOMEDICINE, CONFERENCE PROCEEDINGS: NEW SOLUTIONS FOR NEW CHALLENGES, 2003, : 149 - 152
  • [50] Brain Tissue Classification in Magnetic Resonance Images
    Yazdani, Sapideh
    Yusof, Rubiyah
    Karimian, Alireza
    Riazi, Amir Hossein
    JURNAL TEKNOLOGI, 2015, 72 (02):