Object Segmentation by Long Term Analysis of Point Trajectories

被引:0
|
作者
Brox, Thomas [1 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
关键词
MOTION SEGMENTATION; VIDEO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised learning requires a grouping step that defines which data belong together. A natural way of grouping in images is the segmentation of objects or parts of objects. While pure bottom-up segmentation from static cues is well known to be ambiguous at the object level, the story changes as soon as objects move. In this paper, we present a method that uses long term point trajectories based on dense optical flow. Defining pair-wise distances between these trajectories allows to cluster them, which results in temporally consistent segmentations of moving objects in a video shot. In contrast to multi-body factorization, points and even whole objects may appear or disappear during the shot. We provide a benchmark dataset and an evaluation method for this so far uncovered setting.
引用
收藏
页码:282 / 295
页数:14
相关论文
共 50 条
  • [41] Analysis of long-term disability trajectories in patients with primary progressive multiple sclerosis
    Camerlingo, S.
    Silva, B.
    Garcea, O.
    Lazaro, L.
    Casas, M.
    Pita, C.
    Cohen, L.
    Rojas, J. I.
    Patrucco, L.
    Cristiano, E.
    Pappolla, A.
    Alonso, M.
    Lopez, P.
    Tkachuk, V.
    Steinberg, J.
    Barboza, A.
    Martinez, A.
    Ysrraelit, C.
    Correale, J.
    Madorran, M.
    Chertcoff, A.
    Deri, N.
    Miguez, J.
    Pestchanker, C.
    Silva, E.
    Vrech, C.
    Zanga, G.
    Leguizamon, F.
    Contentti, E. Carnero
    Carra, A.
    Mainella, C.
    Liguori, N. Fernandez
    Alonso, R.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 446 - 447
  • [42] Response to “Methodological Sensitivities to Latent Class Analysis of Long-Term Criminal Trajectories”
    Daniel S. Nagin
    Journal of Quantitative Criminology, 2004, 20 : 27 - 35
  • [43] Response to "Methodological sensitivities to latent class analysis of long-term criminal trajectories''
    Nagin, DS
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2004, 20 (01) : 27 - 35
  • [44] Strike the Balance: On-the-Fly Uncertainty based User Interactions for Long-Term Video Object Segmentation
    Fraunhofer IOSB, Ettlingen, Germany
    不详
    arXiv,
  • [45] Long-Term Monitoring of Structures through Point Cloud Analysis
    Jafari, Bahman
    Khaloo, Ali
    Lattanzi, David
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2016, 2016, 9805
  • [46] Affine Motion Segmentation from Feature Point Trajectories using Rank Minimization
    Min, Yang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4667 - 4670
  • [47] SHORT-TERM MOTION-BASED OBJECT SEGMENTATION
    Arvanitidou, Marina Georgia
    Tok, Michael
    Krutz, Andreas
    Sikora, Thomas
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [48] Click Carving: Interactive Object Segmentation in Images and Videos with Point Clicks
    Suyog Dutt Jain
    Kristen Grauman
    International Journal of Computer Vision, 2019, 127 : 1321 - 1344
  • [49] LiDAR Point Object Primitive Obtaining Based on Multiconstraint Graph Segmentation
    Hui Zhenyang
    Li Zhuoxuan
    Cheng Penggen
    Cai Zhaochen
    Guo Xianchun
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (10)
  • [50] Interactive point-and-click segmentation for object removal in digital images
    Nielsen, R
    Nock, R
    COMPUTER VISION IN HUMAN-COMPUTER INTERACTION, PROCEEDINGS, 2005, 3766 : 131 - 140