Superhydrophobic coating from fluoroalkylsilane modified natural rubber encapsulated SiO2 composites for self-driven oil/water separation

被引:57
|
作者
Saengkaew, Jittraporn [1 ]
Le, Duy [1 ]
Samart, Chanatip [1 ]
Sawada, Hideo [2 ]
Nishida, Masakazu [3 ]
Chanlek, Narong [4 ]
Kongparakul, Suwadee [1 ]
Kiatkamjornwong, Suda [5 ,6 ]
机构
[1] Thammasat Univ, Dept Chem, Fac Sci & Technol, Pathum Thani 12120, Thailand
[2] Hirosaki Univ, Dept Frontier Mat Chem, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
[3] Natl Inst Adv Ind Sci & Technol, Moriyama Ku, 2266-98 Shimoshidami, Nagoya, Aichi 4638560, Japan
[4] Synchrotron Light Res Inst, Publ Org, 111 Univ Ave, Nakhon Ratchasima 3000, Thailand
[5] Chulalongkorn Univ, Fac Sci, Bangkok 10330, Thailand
[6] Acad Sci, FRST, Off Royal Soc, Bangkok 10300, Thailand
关键词
Natural rubber; Encapsulation; Fluoroalkylsilane; Oil/water separation superhydrophobic/superoleophilic mesh; OIL-WATER SEPARATION; SURFACE MODIFICATION; FACILE FABRICATION; COPPER MESH; COATED MESH; STEEL MESH; ROBUST; MEMBRANES; MICROFILTRATION; NANOPARTICLES;
D O I
10.1016/j.apsusc.2018.08.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A superhydrophobic/superoleophilic mesh was successfully prepared in a simple and environmentally friendly process by coating with fluoroalkylsilane-modified natural rubber-encapsulated silica latex (FAS-modified NR/SiO2). TEM images confirmed the formation of a core-shell morphology, in which the rubber core was fully covered by a silica shell. This improved the thermal stability of the composites. Coating with FAS-modified NR/SiO2 enhanced both the hydrophobicity and surface roughness of the mesh. The depth profile of the XPS spectra revealed the presence of fluoroalkylsilane on the superhydrophobic mesh and Ar gas ion etching confirmed migration of the fluoroalkylsilane, SiO2, and carbon to the mesh surface. SEM and AFM results quantified the surface roughness of the coated mesh. Meshes coated with FAS-modified NR/SiO2 exhibited superhydrophobic/superoleophilic properties. Surfaces coated with these encapsulated particles were successfully applied to oil/water separation. They exhibited a separation efficiency of up to 100% and were reusable across 30 cycles.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [21] Superhydrophobic cotton fabric and oil-water separation based on KH570 modified SiO2 and fluorinated epoxy polymer
    Hou, Chengmin
    Gui, Qi
    Song, Jiaqi
    Fan, Ze
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709
  • [22] Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation
    Gu, Haihong
    Li, Guoqing
    Li, Pingping
    Liu, Hanlin
    Chadyagondo, Tavonga Trevor
    Li, Ni
    Xiong, Jie
    APPLIED SURFACE SCIENCE, 2020, 512
  • [23] Synthesis of Hybrid/Superhydrophobic Coupling Agent Grafted Nano SiO2 and Its Use in Fabrication of Rubber Nanocomposite with Outstanding Oil/ Water Separation Capability
    Ghamarpoor, Reza
    Jamshidi, Masoud
    Alhaeehm, Zainab Allawi Kadhim
    RESULTS IN ENGINEERING, 2024, 22
  • [24] Robust, fluorine-free and superhydrophobic composite melamine sponge modified with dual silanized SiO2 microspheres for oil-water separation
    Zhang, Ruilong
    Zhou, Zhiping
    Ge, Wenna
    Lu, Yi
    Liu, Tianshu
    Yang, Wenming
    Dai, Jiangdong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 33 : 50 - 60
  • [25] Ultra-robust Superhydrophobic/superoleophilic Stainless Mesh Coated by PTFE/SiO2 for Oil/water Separation
    Chaolang Chen
    Ding Weng
    Awais Mahmood
    Jiadao Wang
    MRS Advances, 2019, 4 : 359 - 367
  • [26] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Yadan Ding
    Dan Xu
    Hong Shao
    Tie Cong
    Xia Hong
    Huiying Zhao
    Fibers and Polymers, 2019, 20 : 2017 - 2024
  • [27] Superhydrophobic SiO2 microspheres of a porous dehydroabietic-acid-based homopolymer for oil-water separation
    Du, Wenrui
    Wang, Ting
    Xie, Zhoujian
    Xia, Lu
    Lu, Jianfang
    Li, Pengfei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 340
  • [28] Superhydrophobic Leaf Mesh Decorated with SiO2 Nanoparticle-Polystyrene Nanocomposite for Oil-Water Separation
    Latthe, Sanjay S.
    Sutar, Rajaram S.
    Shinde, Tejashwini B.
    Pawar, Smita B.
    Khot, Tushar M.
    Bhosale, Appasaheb K.
    Sadasivuni, Kishor Kumar
    Xing, Ruimin
    Mao, Liqun
    Liu, Shanhu
    ACS APPLIED NANO MATERIALS, 2019, 2 (02) : 799 - 805
  • [29] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Ding, Yadan
    Xu, Dan
    Shao, Hong
    Cong, Tie
    Hong, Xia
    Zhao, Huiying
    FIBERS AND POLYMERS, 2019, 20 (10) : 2017 - 2024
  • [30] Ultra-robust Superhydrophobic/superoleophilic Stainless Mesh Coated by PTFE/SiO2 for Oil/water Separation
    Chen, Chaotang
    Weng, Ding
    Mahmood, Awais
    Wang, Jiadao
    MRS ADVANCES, 2019, 4 (07) : 359 - 367