Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum

被引:10
|
作者
Labib, Mohamed [1 ,2 ]
Goertz, Jonas [2 ,3 ]
Bruesseler, Christian [1 ,2 ]
Kallscheuer, Nicolai [1 ,2 ]
Gaetgens, Jochem [1 ,2 ]
Jupke, Andreas [2 ,3 ]
Marienhagen, Jan [1 ,2 ,4 ]
Noack, Stephan [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geosci IBG1 Biotechnol, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Bioecon Sci Ctr BioSC, Julich, Germany
[3] Rhein Westfal TH Aachen, Aachener Verfahrenstech Fluid Proc Engn AVT FVT, Aachen, Germany
[4] Rhein Westfal TH Aachen, Inst Biotechnol, Aachen, Germany
关键词
Corynebacterium glutamicum; electrochemically induced crystallization; isomerase pathway; protocatechuate; xylose; 3,4-DIHYDROXYBENZOIC ACID; REACTIVE SEPARATION; MOLECULAR ANALYSIS; PYRUVATE-KINASE; GROWTH; OVERPRODUCTION; TRANSFORMATION; SOLUBILITY; ENZYMES; PATHWAY;
D O I
10.1002/bit.27909
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 +/- 12.1 mM (9.6 +/- 1.9 g L-1) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 +/- 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.
引用
收藏
页码:4414 / 4427
页数:14
相关论文
共 50 条
  • [41] Engineering Corynebacterium glutamicum for isobutanol production
    Smith, Kevin Michael
    Cho, Kwang-Myung
    Liao, James C.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (03) : 1045 - 1055
  • [42] Engineering Corynebacterium glutamicum for isobutanol production
    Kevin Michael Smith
    Kwang-Myung Cho
    James C. Liao
    Applied Microbiology and Biotechnology, 2010, 87 : 1045 - 1055
  • [43] Metabolic engineering of Corynebacterium glutamicum for the production of anthranilate from glucose and xylose
    Mutz, Mario
    Bruening, Vincent
    Bruesseler, Christian
    Mueller, Moritz-Fabian
    Noack, Stephan
    Marienhagen, Jan
    MICROBIAL BIOTECHNOLOGY, 2024, 17 (01):
  • [44] Engineering Corynebacterium glutamicum for Geraniol Production
    Man Li
    Shuo Xu
    Wenyu Lu
    Transactions of Tianjin University, 2021, 27 (05) : 377 - 384
  • [45] Engineering Corynebacterium glutamicum for the production of pyruvate
    Stefan Wieschalka
    Bastian Blombach
    Bernhard J. Eikmanns
    Applied Microbiology and Biotechnology, 2012, 94 : 449 - 459
  • [46] Engineering Corynebacterium glutamicum for Geraniol Production
    Li, Man
    Xu, Shuo
    Lu, Wenyu
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (05) : 377 - 384
  • [47] Engineering Corynebacterium glutamicum for Geraniol Production
    Man Li
    Shuo Xu
    Wenyu Lu
    Transactions of Tianjin University, 2021, 27 : 377 - 384
  • [48] Engineering Corynebacterium glutamicum for Geraniol Production
    Man Li
    Shuo Xu
    Wenyu Lu
    Transactions of Tianjin University, 2021, (05) : 377 - 384
  • [49] Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism
    Witthoff, Sabrina
    Schmitz, Katja
    Niedenfuehr, Sebastian
    Noeh, Katharina
    Noack, Stephan
    Bott, Michael
    Marienhagen, Jan
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (06) : 2215 - 2225
  • [50] Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum
    Park, Eunhwi
    Kim, Hye-Jin
    Seo, Seung-Yeul
    Lee, Han-Na
    Choi, Si-Sun
    Lee, Sang Joung
    Kim, Eung-Soo
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 31 (09) : 1305 - 1310