Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium

被引:31
|
作者
Jung, Lae-Seung [1 ]
Ding, Tian [2 ]
Ahn, Juhee [1 ,3 ]
机构
[1] Kangwon Natl Univ, Dept Med Biomat Engn, Chunchon 24341, Gangwon, South Korea
[2] Zhejiang Univ, Dept Food Sci & Nutr, Zhejiang Key Lab Agrofood Proc, Hangzhou 310058, Zhejiang, Peoples R China
[3] Kangwon Natl Univ, Inst Biosci & Biotechnol, Chunchon 24341, Gangwon, South Korea
基金
新加坡国家研究基金会;
关键词
Salmonella Typhimurium; Bacteriophage; Antibiotic resistance; Lytic activity; Ciprofloxacin; ENTERICA SEROVAR TYPHIMURIUM; ANTIMICROBIAL RESISTANCE; ANTIBIOTIC-RESISTANCE; MECHANISMS; CIPROFLOXACIN; ADSORPTION; CHICKENS; SEROTYPE; EFFLUX;
D O I
10.1186/s12941-017-0237-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: The emergence of antibiotic-resistant bacteria can cause serious clinical and public health problems. This study describes the possibility of using bacteriophages as an alternative agent to control multidrug-resistant Salmonella Typhimurium. Methods: The potential lytic bacteriophages (P22-B1, P22, PBST10, PBST13, PBST32, and PBST 35) were characterized by morphological property, heat and pH stability, optimum multiplicity of infection (MOI), and lytic activity against S. Typhimurium KCCM 40253, S. Typhimurium ATCC 19585, ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and S. Typhimurium CCARM 8009. Results: P22-B1 and P22 belong to Podoviridae family and PBST10, PBST13, PBST32, and PBST 35 show a typical structure with polyhedral head and long tail, belonging to Siphoviridae family. Salmonella bacteriophages were highly stable at the temperatures (< 60 degrees C) and pHs (5.0-11.0). The reduction rates of host cells were increased at the MOIdependent manner, showing the highest reduction rate at MOI of 10. The host cells were most effectively reduced by P22, while P22-B1 showed the least lytic activity. The ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 were resistant to ciprofloxacin, levofloxacin, norfloxacin, and tetracycline. P22 showed the highest lytic activity against S. Typhimurium KCCM 40253 (>5 log reduction), followed by S. Typhimurium ATCC 19585 (4 log reduction) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585 (4 log reduction). Conclusion: The results would provide vital insights into the application of lytic bacteriophages as an alternative therapeutics for the control of multidrug-resistant pathogens.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts
    Mather, A. E.
    Reid, S. W. J.
    Maskell, D. J.
    Parkhill, J.
    Fookes, M. C.
    Harris, S. R.
    Brown, D. J.
    Coia, J. E.
    Mulvey, M. R.
    Gilmour, M. W.
    Petrovska, L.
    de Pinna, E.
    Kuroda, M.
    Akiba, M.
    Izumiya, H.
    Connor, T. R.
    Suchard, M. A.
    Lemey, P.
    Mellor, D. J.
    Haydon, D. T.
    Thomson, N. R.
    SCIENCE, 2013, 341 (6153) : 1514 - 1517
  • [42] Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages
    Shahin, Khashayar
    Bouzari, Majid
    Wang, Ran
    Yazdi, Mahsa
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2019, 305
  • [43] TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks
    Baucheron, S
    Mouline, C
    Praud, K
    Chaslus-Dancla, E
    Cloeckaert, A
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2005, 55 (05) : 707 - 712
  • [44] Genotypes of multidrug-resistant Salmonella enterica serotype typhimurium from two regions of Kenya
    Kariuki, S
    Oundo, JO
    Muyodi, J
    Lowe, B
    Threlfall, EJ
    Hart, CA
    FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2000, 29 (01): : 9 - 13
  • [45] Common ground for the control of multidrug-resistant Salmonella in ground beef
    Talbot, EA
    Gagnon, ER
    Greenblatt, J
    CLINICAL INFECTIOUS DISEASES, 2006, 42 (10) : 1455 - 1462
  • [46] Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle
    Dahshan, Hesham
    Shahada, Francis
    Chuma, Takehisa
    Moriki, Hiraku
    Okamoto, Karoku
    VETERINARY MICROBIOLOGY, 2010, 145 (1-2) : 76 - 83
  • [47] Isolation of multidrug-resistant Salmonella typhimurium DT104 from swine in Korea
    Lee, Ki Eun
    Lee, Yeonhee
    JOURNAL OF MICROBIOLOGY, 2007, 45 (06) : 590 - 592
  • [48] Rapid and widespread dissemination of multidrug-resistant blaCMY-2 Salmonella Typhimurium in Mexico
    Zaidi, Mussaret B.
    Leon, Veronica
    Canche, Claudia
    Perez, Carolina
    Zhao, Shaohua
    Hubert, Susannah K.
    Abbott, Jason
    Blickenstaff, Karen
    McDermott, Patrick F.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2007, 60 (02) : 398 - 401
  • [49] Metabolomic Profiles of Multidrug-Resistant Salmonella Typhimurium from Humans, Bovine, and Porcine Hosts
    Overton, Jessie M.
    Linke, Lyndsey
    Magnuson, Roberta
    Broeckling, Corey D.
    Rao, Sangeeta
    ANIMALS, 2022, 12 (12):
  • [50] Antibiofilm Activity of β-Lactam/β-Lactamase Inhibitor Combination against Multidrug-Resistant Salmonella Typhimurium
    Laure, Nana Nguefang
    Ahn, Juhee
    PATHOGENS, 2022, 11 (03):