A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data

被引:36
|
作者
Park, Doori [1 ,3 ]
Park, Su-Hyun [2 ,6 ]
Ban, Yong Wook [1 ,4 ]
Kim, Youn Shic [2 ]
Park, Kyoung-Cheul [1 ,5 ]
Nam-Soo Kim [3 ]
Kim, Ju-Kon [2 ]
Choi, Ik-Young [1 ,5 ]
机构
[1] Kangwon Natl Univ, Dept Agr & Life Ind, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[2] Seoul Natl Univ, Inst GreenBio Sci & Technol, Grad Sch Int Agr Technol & Crop Biotech, 1447 Pyeongchang, Gangwon 25354, South Korea
[3] Kangwon Natl Univ, Dept Mol Biosci, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[4] Kangwon Natl Univ, Dept Forest Resources, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[5] Kangwon Natl Univ, Bioherb Res Inst, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[6] Rockefeller Univ, Lab Plant Mol Biol, 1230 York Ave, New York, NY 10065 USA
来源
BMC BIOTECHNOLOGY | 2017年 / 17卷
关键词
Genetically modified organism (GMO); GM rice; Next-generation sequencing (NGS); Molecular characterization; GM safety; Bioinformatics;
D O I
10.1186/s12896-017-0386-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. Methods: To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Results: Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. Conclusion: NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost-and time-effective methods for assessing the safety of transgenic plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Higher criticism approach to detect rare variants using whole genome sequencing data
    Jing Xuan
    Li Yang
    Zheyang Wu
    BMC Proceedings, 8 (Suppl 1)
  • [12] Development of a transposon-based approach for identifying novel transgene insertion sites within the replicating adenovirus
    Kretschmer, PJ
    Jin, F
    Chartier, C
    Hermiston, TW
    MOLECULAR THERAPY, 2005, 12 (01) : 118 - 127
  • [13] Strengths and caveats of identifying resistance genes from whole genome sequencing data
    Forde, Brian M.
    De Oliveira, David M. P.
    Falconer, Caitlin
    Graves, Bianca
    Harris, Patrick N. A.
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2022, 20 (04) : 533 - 547
  • [14] Identifying somatic changes in drug transporters using whole genome and transcriptome sequencing data of advanced tumors
    van de Geer, Wesley S.
    Mathijssen, Ron H. J.
    van Riet, Job
    Steeghs, Neeltje
    Labots, Mariette
    van Herpen, Carla
    Devriese, Lot A.
    Tjan-Heijnen, Vivianne C. G.
    Voest, Emile E.
    Sleijfer, Stefan
    Martens, John W. M.
    Cuppen, Edwin
    van de Werken, Harmen J. G.
    Bins, Sander
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 159
  • [15] Identifying selection signatures across Mexican Indigenous populations using a new bioinformatics tool for whole-genome data
    Miron, Fernanda
    Reynolds, Austin W.
    Perez-Calixto, D.
    Morett, Enrique
    Aguilar-Ordonez, Israel
    AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2023, 180 : 119 - 119
  • [16] Whole genome sequencing in neurodegenerative diseases: novel variants using different bioinformatics tools
    Croce, Roberta
    Corrado, Lucia
    Barizzone, Nadia
    Di Pierro, Alice
    Genovese, Loredana Marialuisa
    Geraci, Filippo
    Mangano, Eleonora
    D'Aurizio, Romina
    Bordoni, Roberta
    Cora, Davide
    Favero, Francesco
    Zuccala, Miriam
    Comi, Cristoforo
    De Marchi, Fabiola
    Magistrelli, Luca
    Manzini, Giovanni
    De Bellis, Gianluca
    Brusco, Alfredo
    Severgnini, Marco
    Pellegrini, Marco
    Mazzini, Letizia
    D'Alfonso, Sandra
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 305 - 305
  • [17] Whole genome sequencing and bioinformatics analysis of two Egyptian genomes
    ElHefnawi, Mahmoud
    Jeon, Sungwon
    Bhak, Youngjune
    ElFiky, Asmaa
    Horaiz, Ahmed
    Jun, JeHoon
    Kim, Hyunho
    Bhak, Jong
    GENE, 2018, 668 : 129 - 134
  • [18] Bioinformatics for whole-genome shotgun sequencing of microbial communities
    Chen, K
    Pachter, L
    PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (02) : 106 - 112
  • [19] Whole genome shotgun sequencing guided-by bioinformatics pipelines -: An optimized approach for an established technique
    Kaiser, O
    Bartels, D
    Bekel, T
    Goesmann, A
    Kespohl, S
    Pühler, A
    Meyer, F
    JOURNAL OF BIOTECHNOLOGY, 2003, 106 (2-3) : 121 - 133
  • [20] Methy-Pipe: An Integrated Bioinformatics Pipeline for Whole Genome Bisulfite Sequencing Data Analysis
    Jiang, Peiyong
    Sun, Kun
    Lun, Fiona M. F.
    Guo, Andy M.
    Wang, Huating
    Chan, K. C. Allen
    Chiu, Rossa W. K.
    Lo, Y. M. Dennis
    Sun, Hao
    PLOS ONE, 2014, 9 (06):