Experimental study on the durability of FRP bars reinforced concrete beams in simulated ocean environment

被引:28
|
作者
Dong, Zhiqiang [1 ,2 ]
Wu, Gang [1 ,2 ]
Lian, Jinlong [1 ,2 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Civil Engn, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
basalt FRP bars; concrete beam; durability; ocean environment; steel-FRP composite bars (SFCBs); ACCELERATED AGING TESTS; LONG-TERM DURABILITY; BASALT-FIBER; BOND DURABILITY; BFRP BARS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MOIST CONCRETE; COMPOSITE BARS; GFRP BARS;
D O I
10.1515/secm-2017-0237
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this paper, the flexural performance of fiber-reinforced polymer (FRP) bars reinforced concrete (RC) beams after conditioning in a simulated seawater wet-dry cycling environment for 6, 9 and 12 months is experimentally investigated. Two types of FRP bars, i.e. basalt FRP (BFRP) bars and steel-FRP composite bars (SFCBs), are adopted. Steel bars are employed for comparison. During the conditioning, a constant load is coupled to the beams. A total of 24 simply supported beams are tested. In addition, microscopic damage to the conditioned BFRP bars is detected by scanning electron microscopy (SEM). The test results indicated that total corrosion was observed at the surface of the bottom longitudinal steel bars after a maximum exposure of 12 months. However, the degradation of the macro-mechanical properties of the steel bars RC beam was not distinct. The ultimate load of the BFRP bars RC beams after 6 months, 9 months and 12 months was reduced by 22%, 33% and 42%, respectively. The yield load and ultimate load of the SFCBs RC beams were reduced by a maximum of 18% and 38%, respectively. The SEM observations revealed that there were distinct damages at the outer layer of the BFRP bars after 12-month conditioning.
引用
收藏
页码:1123 / 1134
页数:12
相关论文
共 50 条
  • [41] Concrete Shear Strength of Normal and Lightweight Concrete Beams Reinforced with FRP Bars
    Kim, Chung Ho
    Jang, Heui Suk
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2014, 18 (02)
  • [42] Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment
    Guo, F.
    Al-Saadi, S.
    Raman, R. K. Singh
    Zhao, X. L.
    CORROSION SCIENCE, 2018, 141 : 1 - 13
  • [43] Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars
    Dong, Zhiqiang
    Wu, Gang
    Zhao, Xiao-Ling
    Zhu, Hong
    Lian, Jin-Long
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 192 : 671 - 682
  • [44] Theoretical Study on Cracking Moment of Normal Section of Concrete Beams Reinforced with FRP Bars
    Jia, B.
    Zhu, S. T.
    Liu, S. F.
    Liu, X.
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (17) : 5699 - 5702
  • [45] The influence of FRP bars and reinforcement ratio on bending for FRP-reinforced concrete beams
    Song, L.
    Li, B.
    Chen, D.
    Materials Research Innovations, 2015, 19 : 251 - 254
  • [46] Experimental Study on the Flexural Behavior of Concrete Beam Hybrid Reinforced with FRP Bars and Steel Bars
    Ge, Wenjie
    Zhang, Jiwen
    Dai, Hang
    Tu, Yongming
    ADVANCES IN FRP COMPOSITES IN CIVIL ENGINEERING, 2010, : 301 - +
  • [47] Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars
    Jordan Carter
    Aikaterini S. Genikomsou
    Frontiers of Structural and Civil Engineering, 2019, 13 : 1520 - 1530
  • [48] Nonlinear finite element analysis of concrete beams reinforced with FRP bars
    Li, N.
    Luo, Y.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 1477 - 1480
  • [49] Deflection behaviour of concrete beams reinforced with carbon FRP composite bars
    Kassem, C
    El-Salakawy, E
    Benmokrane, B
    DEFLECTION CONTROL FOR THE FUTURE, 2003, 210 : 173 - 189
  • [50] Smart FRP-OFGB bars and their application in reinforced concrete beams
    Zhou, Z
    Ou, JP
    Wang, B
    STRUCTURAL HEALTH MONITORING AND INTELLIGENT INFRASTRUCTURE, VOLS 1 AND 2, 2003, : 861 - 866