Holomorphic vector bundles on Kahler manifolds and totally geodesic foliations on Euclidean open domains

被引:1
|
作者
Aprodu, Monica Alice [1 ,2 ]
Aprodu, Marian [2 ,3 ]
机构
[1] Univ Galatzi, Galati 800008, Romania
[2] Acad Romana, Simion Stoilow Inst Math, Bucharest 014700, Romania
[3] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Holomorphic vector bundle; Grassmannian; Harmonic map; Foliation; HARMONIC MORPHISMS; SUBMERSIONS;
D O I
10.1016/j.difgeo.2015.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this Note we establish a relation between sections in globally generated holomorphic vector bundles on Kahler manifolds, isotropic with respect to a non-degenerate quadratic form, and totally geodesic foliations on Euclidean open domains. We find a geometric condition for a totally geodesic foliation to originate in a holomorphic vector bundle. This description recovers characterisations of Baird and Wood for Euclidean 3-space. The universal objects that play a key role are the orthogonal Grassmannians. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:10 / 19
页数:10
相关论文
共 50 条