Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals

被引:19
|
作者
Yan, ZhiZhong [1 ]
Wang, YueSheng [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Engn Mech, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
phononic crystals; elastic band gap; wavelet method; plane wave expansion (PWE) method;
D O I
10.1007/s11433-007-0056-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-dimensional phononic crystals computed with the wavelet method and the well-known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets males the method possible for efficient band gap computation of more complex phononic structures.
引用
下载
收藏
页码:622 / 630
页数:9
相关论文
共 50 条
  • [31] Elastic wave band gaps in magnetoelectroelastic phononic crystals
    Wang, Yi-Ze
    Li, Feng-Ming
    Kishimoto, Kikuo
    Wang, Yue-Sheng
    Huang, Wen-Hu
    WAVE MOTION, 2009, 46 (01) : 47 - 56
  • [32] Evidence of a large elastic band gap In a one-dimensional phononic crystal
    Coffy, Etienne
    Euphrasie, Sebastien
    Vairac, Pascal
    Khelif, Abdelkrim
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [33] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croenne, Charles
    Vasseur, Jerome O.
    Matar, Olivier Bou
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (06): : 3287 - 3294
  • [34] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croënne, Charles
    Vasseur, Jérôme O.
    Bou Matar, Olivier
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    Journal of the Acoustical Society of America, 2016, 139 (06): : 3288 - 3295
  • [35] Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal
    Hladky-Hennion, Anne-Christine
    Billy, Michel De
    Journal of the Acoustical Society of America, 2007, 122 (05): : 2594 - 2600
  • [36] Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal
    Hladky-Hennion, Anne-Christine
    de Billy, Michel
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122 (05): : 2594 - 2600
  • [37] Hyperelastic Tuning of One-Dimensional Phononic Band Gaps Using Directional Stress
    Demcenko, Andriejus
    Mazilu, Michael
    Wilson, Rab
    Volker, Arno W. F.
    Cooper, Jonathan M.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (06) : 1056 - 1061
  • [38] LAMB WAVE BAND GAPS IN ONE-DIMENSIONAL MAGNETOELASTIC PHONONIC CRYSTAL PLATES
    Zhang, Hong-bo
    Chen, Jiu-jiu
    Han, Xu
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 502 - 505
  • [39] Lamb wave band gaps in one-dimensional radial phononic crystal slabs
    Li, Yinggang
    Chen, Tianning
    Wang, Xiaopeng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (03):
  • [40] One-Dimensional Hypersonic Phononic Crystals
    Gomopoulos, N.
    Maschke, D.
    Koh, C. Y.
    Thomas, E. L.
    Tremel, W.
    Butt, H. -J.
    Fytas, G.
    NANO LETTERS, 2010, 10 (03) : 980 - 984