Semi-supervised Auto-encoder Based Event Detection in Constructing Knowledge Graph for Social Good

被引:0
|
作者
Zhao, Yue [1 ]
Jin, Xiaolong [1 ]
Wang, Yuanzhuo [1 ]
Cheng, Xueqi [1 ]
机构
[1] Univ CAS, CAS Key Lab Network Data Sci & Technol, Inst Comp Technol, CAS Sch Comp & Control Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
knowledge graph; event detection; neural network; auto-encoder;
D O I
10.1145/3350546.3360736
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs have recently been extensively applied in many different areas (e.g., disaster management and relief, disease diagnosis). For example, event-centric knowledge graphs have been developed to improve decision making in disaster management and relief. This paper focuses on the task of event detection, which is the precondition of event extraction for constructing event-centric knowledge graphs. Event detection identifies trigger words of events in the sentences of a document and further classifies the types of events. It is straightforward that context information is useful for event detection. Therefore, the feature-based methods adopt cross-sentence information. However, they suffer from the complication of human-designed features. On the other hand, the representation-based methods learn document-level embeddings, which, however, contain much noise caused by unsupervised learning. To overcome these problems, in this paper we propose a new model based on Semi-supervised Auto-Encoder, which learns Context information to Enhance Event Detection, thus called SAE-CEED. This model first applies large-scale unlabeled texts to pre-train an auto-encoder, so that the embeddings of segments learned by the encoder contain the semantic and order information of the original text. It then uses the decoder to extract the context embeddings and fine-tunes them to enhance a bidirectional neural network model to identify event triggers and their types in sentences. Through experiments on the benchmark ACE-2005 dataset, we demonstrate the effectiveness of the proposed SAE-CEED model. In addition, we systematically conduct a series of experiments to verify the impact of different lengths of text segments in the pre-training of the auto-encoder on event detection.
引用
收藏
页码:478 / 485
页数:8
相关论文
共 50 条
  • [1] Network Intrusion Detection Based on Semi-supervised Variational Auto-Encoder
    Osada, Genki
    Omote, Kazumasa
    Nishide, Takashi
    COMPUTER SECURITY - ESORICS 2017, PT II, 2017, 10493 : 344 - 361
  • [2] A semi-supervised deep auto-encoder based intrusion detection for iot
    Fenanir S.
    Semchedine F.
    Harous S.
    Baadache A.
    Fenanir, Samir (samir.fenanir@univ-setif.dz), 2020, International Information and Engineering Technology Association (25): : 569 - 577
  • [3] Semi-supervised Auto-encoder Based on Manifold Learning
    Li, Yawei
    Jin, Lizuo
    Qin, A. K.
    Sun, Changyin
    Ong, Yew Soon
    Cui, Tong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4032 - 4039
  • [4] Semi-Supervised Auto-Encoder Graph Network for Diabetic Retinopathy Grading
    Li, Yujie
    Song, Zhang
    Kang, Sunkyoung
    Jung, Sungtae
    Kang, Wenpei
    IEEE ACCESS, 2021, 9 : 140759 - 140767
  • [5] Kernel Auto-Encoder for Semi-Supervised Hashing
    Gholami, Behnam
    Hajisami, Abolfazl
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [6] Disentangled Variational Auto-Encoder for semi-supervised learning
    Li, Yang
    Pan, Quan
    Wang, Suhang
    Peng, Haiyun
    Yang, Tao
    Cambria, Erik
    INFORMATION SCIENCES, 2019, 482 : 73 - 85
  • [7] Intrusion Detection System using Semi-Supervised Learning with Adversarial Auto-encoder
    Hara, Kazuki
    Shiomoto, Kohei
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [8] Semi-Supervised Domain Adaptation with Auto-Encoder via Simultaneous Learning
    Rahman, Md Mahmudur
    Panda, Rameswar
    Alam, Mohammad Arif Ul
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 402 - 411
  • [9] Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
    Thapa, Keshav
    Seo, Yousung
    Yang, Sung-Hyun
    Kim, Kyong
    SENSORS, 2023, 23 (02)
  • [10] Regularized Masked Auto-Encoder for Semi-Supervised Hyperspectral Image Classification
    Wang, Liguo
    Wang, Heng
    Wang, Peng
    Wang, Lifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62