Kernel Auto-Encoder for Semi-Supervised Hashing

被引:0
|
作者
Gholami, Behnam [1 ]
Hajisami, Abolfazl [2 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08901 USA
[2] Rutgers State Univ, Dept Elect & Comp Engn, New Brunswick, NJ USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing-based approaches have gained popularity for large-scale image retrieval in recent years. It has been shown that semi-supervised hashing, which incorporates similarity/ dissimilarity information into hash function learning could improve the hashing quality. In this paper, we present a novel kernel-based semi-supervised binary hashing model for image retrieval by taking into account auxiliary information, i.e., similar and dissimilar data pairs in achieving high quality hashing. The main idea is to map the data points into a highly non-linear feature space and then map the non-linear features into compact binary codes such that similar/dissimilar data points have similar/dissimilar hash codes. Empirical evaluations on three benchmark datasets demonstrate the superiority of the proposed method over several existing unsupervised and semi-supervised hash function learning methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Semi-supervised Auto-encoder Based on Manifold Learning
    Li, Yawei
    Jin, Lizuo
    Qin, A. K.
    Sun, Changyin
    Ong, Yew Soon
    Cui, Tong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4032 - 4039
  • [2] Disentangled Variational Auto-Encoder for semi-supervised learning
    Li, Yang
    Pan, Quan
    Wang, Suhang
    Peng, Haiyun
    Yang, Tao
    Cambria, Erik
    INFORMATION SCIENCES, 2019, 482 : 73 - 85
  • [3] Semi-Supervised Auto-Encoder Graph Network for Diabetic Retinopathy Grading
    Li, Yujie
    Song, Zhang
    Kang, Sunkyoung
    Jung, Sungtae
    Kang, Wenpei
    IEEE ACCESS, 2021, 9 : 140759 - 140767
  • [4] Network Intrusion Detection Based on Semi-supervised Variational Auto-Encoder
    Osada, Genki
    Omote, Kazumasa
    Nishide, Takashi
    COMPUTER SECURITY - ESORICS 2017, PT II, 2017, 10493 : 344 - 361
  • [5] Semi-Supervised Domain Adaptation with Auto-Encoder via Simultaneous Learning
    Rahman, Md Mahmudur
    Panda, Rameswar
    Alam, Mohammad Arif Ul
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 402 - 411
  • [6] Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
    Thapa, Keshav
    Seo, Yousung
    Yang, Sung-Hyun
    Kim, Kyong
    SENSORS, 2023, 23 (02)
  • [7] Regularized Masked Auto-Encoder for Semi-Supervised Hyperspectral Image Classification
    Wang, Liguo
    Wang, Heng
    Wang, Peng
    Wang, Lifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] A semi-supervised auto-encoder using label and sparse regularizations for classification
    Chai, Zhilei
    Song, Wei
    Wang, Huiling
    Liu, Fei
    APPLIED SOFT COMPUTING, 2019, 77 : 205 - 217
  • [9] Deep Supervised Auto-encoder Hashing for Image Retrieval
    Tang, Sanli
    Chi, Haoyuan
    Yang, Jie
    Huang, Xiaolin
    Zareapoor, Masoumeh
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 193 - 205
  • [10] A semi-supervised deep auto-encoder based intrusion detection for iot
    Fenanir S.
    Semchedine F.
    Harous S.
    Baadache A.
    Fenanir, Samir (samir.fenanir@univ-setif.dz), 2020, International Information and Engineering Technology Association (25): : 569 - 577