An optimized second-order perturbative study of the asymmetrical quantum anharmonic oscillator

被引:1
|
作者
Liu, YT
Ho, KC
Leung, PT
Liu, KL
机构
[1] Department of Physics, Chinese University of Hong Kong, Shatin
关键词
D O I
10.1007/BF02743335
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the energy eigenvalues of a cubic-quartic anharmonic oscillator with the operator method introduced by Feranchuk and Komarov (Ann. Phys. (N.Y.), 238 (1995) 370). Based on the minimization of the second-order perturbative correction and the energy-variance, a simple optimized second-order perturbative calculation is found to yield very accurate energies especially for the excited states: the asymptotic error is shown to be - 0.002 %. When the same method is applied to an oscillator with the sextic anharmonic potential x(2)/2 (j=3)Sigma(6) x(j), similar accuracy is obtained for the excited states with an asymptotic error of about -0.003 %.
引用
收藏
页码:1235 / 1245
页数:11
相关论文
共 50 条
  • [21] Multiconfigurational second-order perturbative methods: Overview and comparison of basic properties
    Malrieu, J.-P.
    Heully, J.-L.
    Zaitsevskii, A.
    Theoretica Chimica Acta, 1995, 90 (2-3):
  • [22] An adaptive optimized Nystrom method for second-order IVPs
    Rufai, Mufutau Ajani
    Mazzia, Francesca
    Ramos, Higinio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7543 - 7556
  • [23] Second-order perturbative approximation to the SAC/SAC-CI method
    Nakajima, T
    Nakatsuji, H
    CHEMICAL PHYSICS LETTERS, 1999, 300 (1-2) : 1 - 8
  • [24] Anharmonic oscillator discontinuity formulae up to second-exponentially-small order
    Alvarez, G
    Howls, CJ
    Silverstone, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4003 - 4016
  • [25] SECOND-ORDER QUANTUM ARGUMENT SHIFTS IN Ugld
    Ikeda, Y.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (02) : 1294 - 1303
  • [26] Entanglement in a second-order quantum phase transition
    Vidal, J
    Palacios, G
    Mosseri, R
    PHYSICAL REVIEW A, 2004, 69 (02): : 4
  • [27] Quantum degradation of a second-order phase transition
    Stishov, S. M.
    Petrova, A. E.
    Gavrilkin, S. Yu.
    Klinkova, L. A.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [28] SECOND-ORDER ASYMPTOTICS FOR QUANTUM HYPOTHESIS TESTING
    Li, Ke
    ANNALS OF STATISTICS, 2014, 42 (01): : 171 - 189
  • [29] Second-order amplitudes in loop quantum gravity
    Mamone, Davide
    Rovelli, Carlo
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (24)
  • [30] QUANTUM THEORY OF SECOND-ORDER PHASE TRANSITIONS
    KOBELEV, LY
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1967, 24 (03): : 10 - &