An optimized second-order perturbative study of the asymmetrical quantum anharmonic oscillator

被引:1
|
作者
Liu, YT
Ho, KC
Leung, PT
Liu, KL
机构
[1] Department of Physics, Chinese University of Hong Kong, Shatin
关键词
D O I
10.1007/BF02743335
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the energy eigenvalues of a cubic-quartic anharmonic oscillator with the operator method introduced by Feranchuk and Komarov (Ann. Phys. (N.Y.), 238 (1995) 370). Based on the minimization of the second-order perturbative correction and the energy-variance, a simple optimized second-order perturbative calculation is found to yield very accurate energies especially for the excited states: the asymptotic error is shown to be - 0.002 %. When the same method is applied to an oscillator with the sextic anharmonic potential x(2)/2 (j=3)Sigma(6) x(j), similar accuracy is obtained for the excited states with an asymptotic error of about -0.003 %.
引用
收藏
页码:1235 / 1245
页数:11
相关论文
共 50 条
  • [1] Anharmonic vibrational properties by a fully automated second-order perturbative approach
    Barone, V
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01):
  • [2] Asymmetrical quantum sextic anharmonic oscillator: Eigenstates and thermal properties
    Lee, JY
    Liu, KL
    Lo, CF
    PHYSICAL REVIEW A, 1998, 58 (05): : 3433 - 3438
  • [3] Classical and quantum sextic anharmonic oscillators: Second-order solutions and the classical limit
    Jafarpour, M
    Khalafi, G
    Latifi, AR
    Ashrafpour, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2003, 118 (05): : 513 - 523
  • [4] Anharmonic analysis of the vibrational spectrum of ketene by density functional theory using second-order perturbative approach
    Gupta, V. P.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2007, 67 (3-4) : 870 - 876
  • [5] Giant second-order optical nonlinearities in anharmonic-oscillator potential wells: Perturbation theory calculations
    Wang, Guanghui
    Guo, Qi
    Wu, Lijun
    Yang, Xiangbo
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 39 (01): : 75 - 84
  • [6] Perturbative model for nonstationary second-order cascaded effects
    Toci, G
    Vannini, M
    Salimbeni, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (01) : 103 - 117
  • [7] Polaron effects on the second-order susceptibilities in asymmetrical semi-parabolic quantum wells
    Zhang, Chao-Jin
    Guo, Kang-Xian
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 33 (02): : 363 - 366
  • [8] The Morse oscillator and second-order perturbation theory
    Pettitt, BA
    JOURNAL OF CHEMICAL EDUCATION, 1998, 75 (09) : 1170 - 1171
  • [9] NECESSARY AND SUFFICIENT DAMPING IN A SECOND-ORDER OSCILLATOR
    FREDERICKSON, PO
    LAZER, AC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 5 (02) : 262 - +
  • [10] Nonequilibrium nonlinear open quantum systems: Functional perturbative analysis of a weakly anharmonic oscillator
    Hsiang, Jen-Tsung
    Hu, Bei-Lok
    PHYSICAL REVIEW D, 2020, 101 (12):